Интегрирующие и дифференцирующие цепи




Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C, представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R. Напряжение на выводах резистора обозначим UR.
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен Uout + Const. Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение Uout прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току Iin.
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения Uout от интеграла входного Uin, необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение Uin/Iin во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ, которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ.
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C.
Если взять номиналы RC цепи, когда τ будет значительно больше t, тогда начальный участок экспоненты для короткого периода (относительно τ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость Uin/Iin ≈ R.
В таком случае выходное напряжение Uout будет с допустимой погрешностью пропорционально интегралу входного Uin.
Чем больше величины номиналов RC, тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const, тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a), а интеграл константы будет линейной функцией. ∫adx = ax + Const. Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const.
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x2/2 + Const.
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

Uout = RIR = RIC = RC(dUC /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса Ti на выходе интегрирующей цепочки увеличится на время 3 τ. Это время разряда конденсаторадо 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3 τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Интегрирующие и дифференцирующие цепи

‑ДифференцирующаяRC - цепь

Напряжение на резисторе R

UR=U2=IR,

где ,

тогда .

Зная, что UC = U1 – U2,

получим для .

При малых частотах и постоянных токах UR – величина малая, тогда

,

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

§ при заряде – зарядится до 63%

§ при разряде – разрядится на 63% (разрядится до 37%)

вернемся к дифференцирующей RC цепи

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Большую часть времени напряжение на входе неизменно, а значит его дифференциал равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе. Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной.Будем увеличивать сопротивление резистора, что и приведет к росту:

Тут даже не надо ничего комментировать – результат налицо Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям.

Интегрирующая RC-цепь.

– Интегрирующая RC - цепь

Ток в цепи конденсатора

,

а напряжение ,

где ,

тогда .

При , ,

т.е. напряжение на выходе RC – цепи пропорционально интегралу от входного напряжения. Такая RC – цепь именуется интегрирующей.

Постоянная времени

Произведение τ = RC называют постоянной времени цепи.

Если R измерять в Омах, а С – в Фарадах, то произведение RC будет измеряться в секундах. Для конденсатора емкостью 1 мкФ, подключенного к резистору сопротивлением 1 кОм, постоянная времени составляет 1 мс, если конденсатор был предварительно заряжен и напряжение на нём составляет 1 В, то при подключении резистора в цепи появится ток, равный 1 мА.

При условии t >> RC, напряжение на выходе интегрирующей цепочки практически равно выходному напряжению. Следует запомнить правило пяти RC (или пяти τ): за время равное пяти постоянным времени, конденсатор заряжается или разряжается на 99%.

Интегрирующая (иногда её называют сглаживающая) цепочка при определенных условиях может выполнять функцию интегрирующего звена.

Дифференцирующая цепочка в зависимости от своих параметров может выполнять функции разделительного звена, укорачивающей или дифференцирующей цепочки.

Эффективность рассматриваемых цепочек зависит от соотношения между постоянной времени τ = RC и периодом входного сигнала T, поступающего на цепочку.

Например, функция интегрирования выполняется тем лучше, чем сильнее выражено неравенство τ >T. При этом автоматически выполняется неравенство U2 < U1.

Функция дифференцирования цепочкой, выполняется тем лучше, чем сильнее выражено неравенство . При этом, опять-таки, U2 <U1. В этом заключается существенный недостаток рассматриваемых цепочек, они делят (уменьшают) амплитуду выходного сигнала по сравнению с входным

теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: