Признак перпендикулярности плоскостей




Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Дано:

Доказать:

Рис. 3

Доказательство:

Пусть плоскости α и β пересекаются по прямой АС (рис. 3). Чтобы доказать, что плоскости взаимно перпендикулярны, нужно построить линейный угол между ними и показать, что этот угол равен 90°.

Прямая АВ перпендикулярна по условию плоскости β, а значит, и прямой АС, лежащей в плоскости β.

Проведем прямую АD перпендикулярно прямой АС в плоскости β. Тогда ВАD –линейный угол двугранного угла.

Прямая АВ перпендикулярна плоскости β, а значит, и прямой АD, лежащей в плоскости β. Значит, линейный угол ВАD равен 90°. Значит, плоскости α и β перпендикулярны, что и требовалось доказать.

Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 4).

Дано:

Доказать:

Рис. 4

Доказательство:

Прямая l перпендикулярна плоскости γ, а плоскость α проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости α и γ перпендикулярны.

Прямая l перпендикулярна плоскости γ, а плоскость β проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости β и γ перпендикулярны.

Следствие доказано.

Следствие 2

Плоскость линейного угла перпендикулярна всем элементам соответствующего двугранного угла: ребру и граням.

Дано:

,

,

.

Доказать:

,

.

Рис. 5

Доказательство:

Мы имеем двугранный угол, образованный полуплоскостями α и β, которые пересекаются по прямой l (l – ребро двугранного угла) (рис. 5).

На ребре l взята точка М, к ребру l проведены два перпендикуляра МА и МВ в плоскостях α и β соответственно. Пусть пересекающиеся прямые МА и МВ образуют плоскость γ. Это и есть плоскость линейного угла.

Прямая l перпендикулярна двум пересекающимся прямым АМ и МВ из плоскости γ по построению. Значит, прямая l перпендикулярна плоскости γ.

Плоскость α проходит через прямую l, которая перпендикулярна γ, значит, .

Аналогично, плоскость β проходит через прямую l, которая перпендикулярна γ, значит, .

Итак, доказано, что плоскость линейного угла перпендикулярна всем его элементам: и ребру, и граням.

Утверждение

Если в одной из перпендикулярных плоскостей проведена прямая перпендикулярно к их линии пересечения, то эта прямая перпендикулярна и к другой плоскости.

Дано: ,

.

Доказать:

Рис. 6

Доказательство:

Пусть в плоскости β проведена прямая b = MB, которая перпендикулярна к линии пересечения плоскостей – l. (рис. 6)

Проведем прямую МА = а перпендикулярно прямой l. Тогда из точки М проведены два перпендикуляра к ребру l в плоскостях α и β. Получаем ∠АМВ – линейный угол двугранного угла. Так как плоскости α и β перпендикулярны, то ∠АМВ = 90°. Значит, прямые а и b перпендикулярны.

Тогда прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая b перпендикулярна плоскости α, что и требовалось доказать.

Напоминание определения и признака перпендикулярности прямой и плоскости

Определение. Прямая а называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой из плоскости.

Признак. Если прямая а перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к самой плоскости, а значит, к любой прямой, лежащей в этой плоскости (рис. 7).

Рис. 7

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-02-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: