Теоретический материал для самостоятельного изучения. Конспект урока. Алгебра и начала математического анализа. Тригонометрические неравенства.




Конспект урока

Алгебра и начала математического анализа

Тригонометрические неравенства.

Перечень вопросов, рассматриваемых в теме

  • решение простейших тригонометрических неравенств с помощью тригонометрической окружности;
  • решение тригонометрических неравенств, сводимых к квадратным;
  • решение тригонометрических неравенств методом интервалов.

Глоссарий по теме

  1. Синусом угла называется ордината точки, полученной поворотом точки (1;0) вокруг начала координат на угол .Обозначается
  2. Косинусом угла называется абсцисса точки, полученной поворотом точки (1;0) вокруг начала координат на угол .Обозначается
  3. Тангенсом угла называется отношение к

Угол может выражаться и в градусах и в радианах.

  1. Арккосинусом числа называется такое число α, что: . Арккосинус числа m обозначают: .
  2. Арксинусом числа называется такое число α, что: и . Арксинус числа m обозначают: .
  3. Арктангенсом числа m называется такое число α, что: и . Арктангенс числа m обозначают: .

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru

Теоретический материал для самостоятельного изучения

1. Рассмотрим простейшие тригонометрические неравенства.

Начнем рассматривать с неравенства .

Из рисунка 1 видно, что если a>1, то решений данное неравенство не имеет.

Рисунок 1 – Точки пересечения прямой y=a (a>1) с тригонометрической окружностью

Если a=1, то решений такое неравенство также не имеет (рис.2). Однако, если мы изменим знак на (получим неравенство , то решением его будет множество точек, в которых . Это числа .

Рисунок 2 – Общие точки прямой y=1 с тригонометрической окружностью

Рассмотрим теперь значение (рис.3).

Рисунок 3 – Решение неравенства

Видим, что множество решений данного неравенства представляет собой дугу, начало которой в точке (1) , конец в точке (2) N(πarcsina). В зависимости от знака неравенство (строгое оно или нестрогое) промежуток представляет собой интервал или отрезок. Далее множество промежутков получается прибавлением :

(для строгого неравенства) – множество интервалов;

(для нестрогого неравенства) – множество отрезков.

Если значение a= – 1,то получим следующую картинку (рис. 4):

Рисунок 4 – Общие точки прямой y= – 1 с тригонометрической окружностью

Видно. что если неравенство нестрогое, то решением неравенства является любое действительное число. Если неравенство строгое, то решением неравенства является любое действительное число, кроме чисел вида .

Наконец, если , то решением неравенства является любое действительное число.

Решение неравенства рассмотрим более коротко.

Очевидно, что если , то решением неравенства является любое действительное число.

Если , то решением неравенства является любое действительное число, а решением неравенства является любое действительное число, за исключением чисел вида .

Если , то решением неравенства являются числа вида , а неравенство решений не имеет. То же самое можно сказать о решении неравенств и в случае .

Случай рассмотрим более подробно (рис. 5).

Рисунок 5 – Решение неравенства

Решение неравенства для :

(для строгого неравенства) - множество интервалов;

(для нестрогого неравенства) - множество отрезков.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-06-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: