Лекция 1. Понятие о горном давлении




Горное давление - напряжения, возникающие в массиве горных пород, вблизи стенок выработок, скважин, в целиках, на поверхностях контакта порода - крепь в результате действия гравитационных сил, а также тектонических сил и изменения температуры верхних слоев земной коры. Наиболее общей формой проявления горного давления является деформирование горных пород, которое приводит к потере ими устойчивости, формированию нагрузки на крепь, динамическим. явлениям (Горным ударам, Внезапным выбросам). Поэтому при проведении горных выработок предварительно рассчитывают горное давление для определения прочности несущих элементов подземных сооружений (стенок выработок, целиков и крепей) и выбора способов управления горным давлением. Первые методы расчёта горного давления основывались на гипотезе, согласно которой горное давление вызвано весом определённого объёма пород, приуроченного к данному несущему элементу. Одной из наиболее распространённых была гипотеза Турнера (Франция, 1884), на основе которой горное давление в целиках при камерно-столбовой системе разработки определяется весом столба пород (от уровня залежи до поверхности), ограниченного в плане осями симметрии прилегающих к целику камер или просеков. На этой гипотезе основан метод расчёта профессора Л. Д. Шевякова. Аналогичные гипотезы о горном давлении на крепь подготовительных выработок исходили из предположения о действии на крепь веса столба пород от выработки до поверхности с основанием, равным пролёту выработки. Однако оно приводило даже для небольших глубин к нагрузкам, которые не могла бы выдержать крепь. Поэтому были выдвинуты гипотезы о действии на крепь веса пород в пределах треугольного или сводчатого объёма с основанием, по-прежнему равным пролёту выработки. Наибольшую известность получила гипотеза рус. Учёного профессора M. M. Протодьяконова (1907), в которой указанный объём представляет собой параболический свод. Его высота (b) связана с полупролётом выработки (а) соотношением: b=a/f, где f - тангенс угла внутреннего трения для сыпучих пород или коэффициент крепости для связанных пород. Расчёты по этой формуле для глубин до 200-300 м (при отсутствии тектонических напряжений) дают практически приемлемые результаты. Применительно к лавам угольных пластов гипотеза о весе пород свода трансформировалась в гипотезу о сводчатой форме распределения горного давления на крепь, параметры которого определяются по результатам натурных замеров и по качественным оценкам. Наряду с упомянутыми гипотезами развивалось направление, сводившее изучение горного давления к задаче изучения напряжённо-деформированного состояния массива, не потерявшего сплошности. Здесь широкое применение нашли методы механики деформируемых сред, в частности теории упругости, пластичности, ползучести и др. Упругое напряжённо-деформированное состояние в окрестности горизонтальной круглой подготовительной выработки теоретически изучено А. Леоном (Германия, 1908); им же совместно с Ф. Вильхаймом (Германия, 1910) поставлены опыты по разрушению стенок такой выработки на моделях из мрамора. Для вертикального ствола упругая задача решена сов. учёным А. Н. Динником в 1926, попутно им дан вывод одной из наиболее распространённых формул для определения коэффициента бокового распора. Более детальное решение для незакреплённого ствола получено советским учёным С. Г. Лехницким (1937). Упруго-пластичное напряжённо-деформированное состояние в окрестности горизонтальной и вертикальной круглой выработки рассмотрел Р. Феннер (Чили, 1938). В его решении горное давление на крепь определяется минимальным значением, при котором окружающая выработку зона будет находиться в равновесии. Принципиальной для развития теории горного давления явилась работа сов. учёного Г. Н. Савина (1947), в которой использовано условие совместности перемещений контактирующих друг с другом точек поверхности выработки и крепи. Это позволило теоретически объяснить влияние податливости крепи на величину горного давления. А. Лабас (Бельгия, 1949) предложил рассматривать поведение пород в разрушенных областях вокруг выработок как поведение сыпучей среды, характеризующейся внутренним трением и сцеплением. В 1954 советский учёный Г. Н. Кузнецов впервые сформулировал фундаментальные понятия о двух крайних режимах работы крепи: заданной нагрузки и заданной деформации; дальнейшее развитие эти понятия получили в работах советского учёного Г. А. Крупенникова и его школы. Г. Н. Кузнецовым сформулирована также концепция шарнирно-блочных систем, образующихся в кровле очистных выработок. Советский учёный К. В. Руппенейт на основе предложений Г. Н. Савина и А. Лабаса построил универсальную расчётную схему, позволяющую связать горное давление на крепь подготовительной выработки с упругими и прочностными свойствами пород. Ю. М. Либерман, модифицировав схему К. В. Руппенейта, разработал метод, позволяющий определить оптимальную жёсткость крепи. В конце 70-х гг. вновь возродился интерес к определению горного давления на крепь как веса некоторого объёма сыпучей породы; достижения в этой области связаны с работами советского учёного Е. И. Шемякина и др. Систематическое изучение тектонических сил в массиве горного давления начато в СССР работами М. В. Гзовского в 1954 и продолжено И. А. Турчаниновым, Г. А. Марковым, за рубежом - Н. Хастом (Швеция, 1958) и др. исследователями. Основные методы исследования ГД - аналитический, моделирование (оптическое и эквивалентными материалами) и натурные наблюдения.

Горное давление в ненарушенном (нетронутом) массиве (массив, в котором ещё нет горных выработок), как однородный и изотропный с горизонтальной поверхностью и учитывать лишь гравитационные силы, то в нём будут действовать начальные нормальные напряжения:

σz = γH; σx = σy = ξγH,

где H - глубина от поверхности; γ - объёмный вес; ξ - коэффициент бокового распора. Начальные касательные напряжения τxy, τxz, τyz равны нулю; поэтому начальные напряжения представляют собой главные нормальные напряжения, а оси z, х, у - главные оси (рис. 1).

Рис. 1. Схема действия напряжений на элементарный объём в массиве горных пород.

В реальных природных средах действует большое число факторов, иногда сильно влияющих на изменение значения горного давления (например, направленность тектонических сил, и как правило, вызывает неравенство горизонтальных составляющих).

Горное давление в капитальных и подготовительных выработках. При проведении горизонтальных капитальных и подготовительных выработок главные нормальные напряжения изменяются, а главные оси напряжения поворачиваются по сравнению с начальными. В плоском сечении, перпендикулярном оси выработки (вдали от забоя), напряжённое состояние каждой точки можно охарактеризовать главными нормальными напряжениями σ1 и σ2 и линиями, указывающими направление главных осей в каждой точке, т.н. траекториями главных напряжений (рис. 2, а).

Рис. 2. Схемы распределения горного давления в капитальных и подготовительных выработках: а - траектории главных напряжений; б - распределение тангенциальных напряжений в отсутствии зоны неупругих деформаций; в - распределение тангенциальных напряжений при образовании зоны неупругих деформаций; 1 - контур сечения выработки; 2 - элемент породы с действующими на него напряжениями б1 и б2; 3 - распределение б1; 4 - зона неупругих деформаций; 5 - траектории б1; 6 - уровень начальных напряжений; 7 - траектории б2.

Напряжения σ2 вблизи выработки уменьшаются по сравнению с напряжениями в нетронутом массиве, а напряжения σ1 могут значительно возрастать или менять знак, вызывая опасное растяжение. Главные нормальные напряжения, направленные параллельно (или почти параллельно) оси выработки, вдали от забоя практически не изменяются. Концентрация напряжений σ1, как правило, неодинакова в разных точках поверхности выработки, сильно возрастая в углах и закруглениях малого радиуса кривизны. Если концентрация напряжений не слишком велика, то напряжения σ1 имеют общую тенденцию к убыванию при удалении от выработки (рис. 2, б), a σ2 к возрастанию. При больших концентрациях напряжения превосходят соответствующие пределы прочности пород, и вблизи поверхности выработки эти породы начинают пластически деформироваться или хрупко разрушаться (зона неупругих деформаций). В этой зоне напряжения σ1 падают по сравнению с теми значениями, которые наблюдались до её образования, и меняется характер их распределения (рис. 2, в). Максимум напряжений σ1 приурочен к внешней границе зоны неупругих деформаций, на которой они могут претерпевать разрыв. Смещения точек поверхности выработки увеличиваются с удалением от забоя (рис. 3), однако на расстоянии 4-5 пролётов выработки наступает их стабилизация.

Рис. 3. Схема формирования горного давления на крепь в разрезе вдоль оси выработки: 1 - контур сечения выработки; 2 - величина смещения; 3 - положение крепи в момент установки; 4 - положение крепи при отходе забоя; 5 - граница зоны неупругих деформаций.

Дальнейший рост смещений во времени обусловлен геологическими свойствами горных пород. При прочих равных условиях смещения увеличиваются с ростом глубины разработки и уменьшением показателей прочности и модуля деформации пород.

Роль крепи в выработке сводится к предотвращению чрезмерного развития зоны неупругих деформаций и обрушения пород. При достаточно большой жёсткости крепи она работает в режиме заданной деформации и горное давление возникает вследствие того, что крепь воспринимает прирост смещений с момента её установки, который зависит от давления (Р).

При малой жёсткости крепи её смещения велики, и поэтому породы зоны неупругих деформаций отслаиваются от окружающих пород, нагружая крепь собственным весом (режим заданной нагрузки). В режиме заданной или взаимовлияющей деформации давление будет тем меньше, чем меньше жёсткость крепи. Этой возможностью снижения нагрузки пользуются на практике, создавая в крепи различные узлы и элементы податливости. Однако, чем меньше реакция крепи, тем больше размеры зоны неупругих деформаций, породы которой воздействуют на крепь своим весом. Таким образом, снижение жёсткости крепи имеет естественный предел - оптимальную жёсткость, обеспечивающую минимальное давление в данных горно-геологических условиях. При невозможности (или затруднительности) регулировки жёсткости постоянной крепи (например, монолитной бетонной) давление на неё снижают, возводя крепь на достаточном расстоянии от забоя спустя достаточное время после обнажения. В период от момента образования обнажения до возведения постоянной крепи соответствующие участки выработки поддерживаются временной крепью.

Влияние очистных работ приводит к увеличению смещений контура выработки. С целью уменьшения этого влияния применяют различные способы охраны горных выработок. Общий характер изменения напряжений при сооружении вертикальных выработок (стволов) такой же, как при проведении горизонтальной выработки. Взаимодействие мощной и жёсткой крепи ствола с массивом имеет характер взаимовлияющей деформации.

Горное давление в очистных выработках. (Характерно для угольных месторождений). При очистной выемке длинными забоями характер горного давления и его проявлений существенно иной, чем в подготовительных выработках и стволах (рис. 5).

Рис. 5. Схема проявлений горного давления в лаве: 1 - пласт; 2 - опорное давление; 3 - основная кровля; 4 - обрушение породы; 5 - посадочная крепь; 6 - призабойная крепь; 7 - зона отжима; 8 - непосредственная кровля.

Горное давление на крепь очистной выработки вычисляется с учётом условий её работы в режиме заданной нагрузки или заданной (взаимовлияющей) деформации аналогично горному давлению на крепи капитальных и подготовит. выработок.

Горное давление в целиках. Напряжённое состояние достаточно высоких (по сравнению с характерным размером основания) междукамерных столбчатых и ленточных целиков является соответственно приближённо одноосным или двухосным. Расчёты и экспериментальные исследования показывают, что междукамерные целики, находящиеся вблизи массивных панельных или барьерных целиков, а также вблизи границ залежи, в известной степени разгружены от горного давления. В широких целиках распределение напряжений по сечению существенно неравномерно и зависит от механических свойств горных пород целика почвы и кровли. В целиках, сложенных крепкими, хрупкими породами и залегающими в таких же породах, значительные концентрации напряжений наблюдаются вблизи стенок. При существенно пластичных породах (уголь, нек-рые руды) у стенок целика происходит спад напряжений. В средней части широкого целика может образоваться "ядро", находящееся в объёмном напряжённом состоянии, что повышает несущую способность целика. Для учёта этого повышения применяют эмпирические коэффициенты, а также используют закономерности, полученные на основе использования теории предельного равновесия.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-02-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: