Какова предпосылка для перехода к полярным координатам?




Очевидно, что основной предпосылкой является наличие окружности (ей). Подчёркиваю, что это лишь предпосылка, а не обязательное правило! То есть, область интегрирования может быть ограничена окружностью (ями), но переход к полярным координатам только усложнит решение, а то и вообще заведёт его в тупик. И такие примеры встречаются реально.

Итак, площадь фигуры вычислим с помощью двойного интеграла, используя полярную систему координат:

По формулам перехода найдём полярные уравнения окружностей:

Теперь выясним порядок обхода области. Луч радара входит в область через окружность и выходит из неё через окружность (красная стрелка), при этом он осуществляет поворот от полярной оси до угла (зелёная стрелка).

Напомню также, что «альфа» и «бета» – это не просто формальные значения углов: полярное уравнение непосредственно задаёт полярную ось (положительное направление оси абсцисс), а уравнение луч, исходящий из полюса и совпадающий с верхней частью прямой .

Примечание: если рассматривать обобщенные полярные координаты, то уравнение определяет полярную ось и её продолжение (всю ось абсцисс), а уравнение – всю прямую

В рассматриваемой задаче дана «хорошая» прямая и значение угла понятно «с ходу». Как найти угол в общем случае? Из материалов статьи Прямая на плоскости вспоминаем, что угловой коэффициент прямой равен тангенсу угла наклона данной прямой к положительному направлению оси абсцисс: . В данном случае , откуда следует, что (если тяжко с числами – тригонометрические таблицы в помощь).

Возвращаемся к решению. По результатам «сканирования» области мы выяснили, что на промежутке полярный радиус изменяется в пределах .

Перейдём к повторным интегралам:

Остальное – дело техники:

1)

2)

Ответ:

Прикинув по чертежу количество клеточек, приходим к выводу, что полученный результат вполне и вполне правдоподобен.

Следующие два примера для самостоятельного решения:

Пример 3

С помощью двойного интеграла вычислить площадь фигуры, ограниченной линиями

Пример 4

Вычислить двойной интеграл, используя полярные координаты

В примере №4 мы встретили ещё одну распространённую формулировку условия, в которой предложено непосредственно вычислить двойной интеграл. Да, он численно равен площади области , но, коль скоро, о площади изначально молчок, то и в решении об этом не нужно упоминать;-) Подумайте, как грамотно записать ответ задания.

Примерные образцы решений и чертежи в конце урока. Я их оформил в разном стиле, выбирайте, что больше нравится.

То были заезженные типовики, а сейчас на очереди более редкий, но очень интересный и поучительный экземпляр:

Пример 5

Вычислить двойной интеграл

Решение: определённый интеграл задаёт площадь области интегрирования, но о площади нас никто не спрашивал, поэтому никого не будем загружать своей эрудицией =) К тому же она сейчас ой как потребуется для других целей.

В чём заключается особенность этого задания? Прежде всего, бросается в глаза, что область «дэ» ограничена единственной кривой, и по характерным признакам – это какая-то алгебраическая линия 4-го порядка. Основная проблема у нас с чертежом. Конечно, можно погрузиться в справочники, но на это нет ни времени, ни особого желания. Поэтому мы попытаемся ограничиться общим анализом и обойтись совсем без чертежа.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: