Второй закон термодинамики




Первый закон термодинамики описывает количественные соотношения между параметрами термодинамической системы, имеющими место в процессах преобразования тепловой энергии в механическую и наоборот, но не устанавливает условия, при которых эти процессы возможны. Эти условия, необходимые для преобразования одного вида энергии в другой, раскрывает второй закон термодинамики.

Существует несколько формулировок этого закона, и каждая из них имеет одинаковое смысловое содержание. Здесь приведены наиболее часто упоминающиеся формулировки второго закона термодинамики.

1. Для превращения теплоты в механическую работу необходимо иметь источник теплоты и холодильник, температура которого ниже температуры источника, т. е. необходим температурный перепад.

2. Нельзя осуществить тепловой двигатель, единственным результатом действия которого было бы превращение теплоты какого-либо тела в работу без того, чтобы часть теплоты не передавалась другим телам.
Из этой формулировки можно сделать вывод, что невозможно построить вечный двигатель, совершающий работу благодаря лишь одному источнику теплоты, поскольку любой, даже самый колоссальный источник теплоты в виде материального тела не способен отдать тепловой энергии больше, чем ему позволяет энтальпия (часть полной энергии тела, которую можно превратить в теплоту, охладив тело до температуры абсолютного нуля).

3. Теплота не может сама по себе переходить от менее нагретого тела к более нагретому без затраты внешней работы.

Как видите, второй закон термодинамики не имеет в своей основе формулярного содержания, а лишь описывает условия, при которых возможны те или иные термодинамические явления и процессы, подтверждая, по сути, общий закон сохранения энергии.

Цикл Карно

В термодинамике цикл Карно́ или процесс Карно — это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов[1]. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.

Описание цикла Карно

Цикл Карно в координатах T—S

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→Б). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс В→Г). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Кпд тепловой машины Карно

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

.

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

.

Отсюда коэффициент полезного действия тепловой машины Карно равен

.

теплообмена с окружающей средой. При этом его температура увеличивается до

Максимальный кпд тепловых машин (теорема Карно)

Главное значение полученной Карно формулы для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т1 и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т1 и Т2.

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η ’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина — по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

(5.12.11)

Рис. 5.18

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = | |

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η' > η, то А' > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η ', то можно другую машину заставить работать по обратному циклу, а машину Карно — по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η ' = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η ' > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|' < г| не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η ' ≤ η, или

Это и есть основной результат:

(5.12.13)

Кпд реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения , где Т1абсолютная температура нагревателя, а Т2абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможномуважнейшая техническая задача.

Преобразование механической энергии в электрическую и обратно

На законах электромагнитной индукции и электромагнитных сил основано действие электрических машин - генераторов, преоб­разующих механическую энер­гию в электрическую, и дви­гателей, преобразующих элек­трическую энергию в механи­ческую.

Обратимся к рис. 95. В магнитном поле между полю­сами N и S помещен прямо­линейный проводник. Если при помощи внешней механической силы F передвигать этот проводник перпендику­лярно магнитным линиям поля, то в нем будет индуктироваться э. д. с. . Если концы проводника замкнуты на внешнее со­противление, то по цепи потечет ток I, совпадающий по на­правлению с э. д. с. Е.

Рис. 95. Преобразование механической энергии в электрическую

Напишем уравнение 2-го закона Кирхгофа для этой цепи:

(а)

где V - напряжение на зажимах, В;

r - сопротивление проводника, ;

I·r - падение напряжения в проводнике, В.

Умножая почленно выражение (а) на I, получим

Так как, то

Учитывая, что и имеем

(б)

где РМЕХ = Е·I - механическая мощность, преобразуемая в элек­трическую;

РЭЛ = U·I - электрическая мощность, отдаваемая во внеш­нюю цепь;

ΔР = I2r - потери мощности (в виде тепла) в сопротивле­нии проводника.

Рассмотрим теперь процесс преобразования электрической энер­гии в механическую.

Пусть прямолинейный проводник АВ (рис. 96), по которому проходит ток I от источника напряжения, помещен во внешнее магнитное поле, образованное магнитом N - S. Если проводник неподвижен, то энергия ис­точника напряжения расхо­дуется исключительно на на­грев проводника:

Дж

Затрачиваемая мощность будет равна

Вт

откуда определяем ток в цепи:

(а)

Однако известно, что про­водник с током, помещенный в магнитное поле, будет испытывать действие силы F со стороны поля, стремя­щейся перемещать проводник в магнитном поле в направле­нии, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные линии поля и в нем, по закону электромагнитной индукции, возникнет индуктированная э. д. с. Направление этой э. д. с, определенное по правилу правой руки, будет обратным току I. Назовем ее обратной э. д. с. ЕОБР. Величина ЕОБР согласно закону электромагнитной индукции будет равна

Рис. 96. Преобразование электрической энергии в механическую

По второму закону Кирхгофа, для замкнутой цепи имеем

или

(б)

откуда ток в цепи

(в)

Сравнивая выражения (а) и (в), видим, что в проводнике, дви­жущемся в магнитном поле при одних и тех же значениях U и r, ток будет меньше, чем в неподвижном проводнике.

Умножая почленно выражение (б) на I, получим

Так как, то

Учитывая, что и имеем

или

Последнее выражение показывает, что при движении провод­ника с током в магнитном поле мощность источника напряжения преобразуется в механическую мощность и частично в тепловую. Аналогичный процесс преобразования электрической энергии в ме­ханическую происходит в электрических двигателях.

Рассмотренные выше примеры показывают, что электрическая машина обратима, т. е. может работать как генератор и как дви­гатель.

Закон Джоуля-Ленца в интегральной и дифференциальной формах

Теперь подробнее обсудим величину DU (которая представляет в расчетах изменение внутренней энергии) применительно к проводнику, по которому начинает течь ток.

Постепенно, выбранный проводник будет нагреваться, а это значит, что будет увеличиваться его внутренняя энергия. По мере нагрева разность между температурой проводника и окружающей его среды будет увеличиваться. Согласно закономерности Ньютона, вместе с этим возрастать будет и мощность теплоотдачи проводника. Таким образом, через какое-то время температура проводника, достигнув определенного значения, перестанет увеличиваться. В этот момент величина DU будет равной нулю, и перестанет изменяться внутренняя энергия проводника.

Тогда для этого состояния первый закон термодинамики будет выглядеть так: A = – Q. То есть когда не меняется внутренняя энергия проводника, работа тока целиком превращается в теплоту. Используя этот вывод, можем записать все три рассмотренные формулы для расчета работы тока в несколько ином виде, в конечном итоге получаем закон Джоуля-Ленца в интегральной форме:

На первый взгляд все формулы могут считаться равноправными, однако только последняя справедлива всегда, поэтому она и считается законом. А вот остальные две справедливы только при определенных условиях, поэтому законом считаться не могут.

Закон Джоуля-Ленца в дифференциальной форме выглядит совершенно по-иному, мы рассмотрим только общий вариант, без дополнительных выведений и вычислений, который выглядит так:

Где:

  • - является мощностью тепла, выделяемого в единице объёма;
  • - плотность электрического тока;
  • - это напряжённость электрического поля;
  • - проводимость выбранной среды.

Так в общих чертах выглядит закон Джоуля-Ленца и его интегральная и дифференциальная формы. Хотя, если проводить дальнейшие вычисления, то закон может принимать и другие формы.

21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.

Участок цепи, содержащий источник ЭДС, называется неоднородным (рис.5.11). Всякий источник ЭДС характеризуется величиной ЭДС ε и внутренним сопротивлением r.

- напряжение на концах участка цепи.

Рис.5.11. Неоднородный участок цепи.

Закон Ома для неоднородного участка цепи имеет вид:

При соединении концов неоднородного участка цепи идеальным проводником образуется замкнутая цепь, в которой потенциалы φ1 и φ2 выравниваются и мы приходим к закону Ома для замкнутой (или полной) цепи:

Если сопротивление внешней цепи , то имеем случай короткого замыкания. В этом случае в цепи течет максимальный ток:

При имеем разомкнутуюцепь. В этом случае ток в цепи равен нулю:

22. Правила Кирхгофа для разветвленных цепей постоянного тока

Правило 1: в любом узле сумма входящих токов и выходящих равна нулю. Оно учитывает закон сохранения электрического заряда.

При этом токи, идущие к узлу, и токи, исходящие из узла, следует считать величинами разных знаков.

Правило 2: алгебраическая сумма произведений сил токов на сопротивления при обходе контура равна сумме ЭДС в контуре. Учитывается закон сохранения энергии.

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей.

В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.

Рисунок 1.10.1. Узел электрической цепи. I 1, I 2 > 0; I 3, I 4 < 0

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа:

Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю:

I 1 + I 2 + I 3 +... + In = 0.

Первое правило Кирхгофа является следствием закона сохранения электрического заряда.

В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).

Рисунок 1.10.2. Пример разветвленной электрической цепи. Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.

Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, abcd. Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура. При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.

Рисунок 1.10.3. «Правила знаков»

Для участков контура abcd обобщенный закон Ома записывается в виде:

Для участка bc: I 1 R 1 = Δφ bc 1.

Для участка da: I 2 R 2 = Δφ da 2.

Складывая левые и правые части этих равенств и принимая во внимание, что Δφ bc = – Δφ da, получим:

I 1 R 1 + I 2 R 2 = Δφ bc + Δφ da 1 + 2 = – 1 2.

Аналогично, для контура adef можно записать:

I 2 R 2 + I 3 R 3 = 2 + 3.

Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов I 1, I 2 и I 3 имеет вид:

I 1 R 1 + I 2 R 2 = – 1 2,

 

I 2 R 2 + I 3 R 3 = 2 + 3,

 

I 1 + I 2 + I 3 = 0

23. Работа и мощность постоянного электрического тока. КПД источника тока.

Работа А электрического тока на участке цепи с электрическим сопротивлением R за время D t равна:

A = I · U ·? t = I2 · R ·? t

Мощность P электрического тока равна отношению работы А тока ко времени D t, за которое эта работа совершена:

P = A /? t = I · U = I2 R = U2 / R.

Работа А электрического тока равна количеству теплоты Q, выделяемому проводником (если не совершается механическая работа и не происходят химические реакции):

Q = I2 · R ·? t

Этот закон был экспериментально установлен английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Ленцем (1804-1865) и поэтому носит название закона Джоуля - Ленца.

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R (рис. 7.5).

КПД всегда определяем как отношение полезной работы к затраченной:

  (7.8.1)  

Полезная работа – мощность, выделяемая на внешнем сопротивлении R в единицу времени. По закону Ома имеем: а тогда

.

24. Вывод закона Ома из классической теории электропроводимости металлов.

Друде считал, что сразу после очередного соударения электрона с ионом кристаллической решетки скорость упорядоченного движения электрона равна нулю. Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное

и к концу пробега скорость упорядоченного движения достигнет значения

(18.2)

где t - среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости . В этом приближении , где - среднее значение длины свободного пробега, - скорость теплового движения электронов. Подставим это значение t в формулу (18.2)

Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального

Подставив это выражение в

получим

Плотность тока оказалась пропорциональной напряженности поля. Следовательно, мы получили закон Ома. Согласно коэффициент пропорциональности между j и Е представляет собой проводимость

(18.3)

Если бы электроны не сталкивались с ионами решетки, длина свободного пробега, а, следовательно, и проводимость были бы бесконечно велики. Таким образом, электрическое сопротивление металлов обусловлено соударениями свободных электронов с ионами.

  1. Вывод закона Джоуля-Ленца из классической теории электропроводности металлов. Затруднения этой теории.

К концу свободного пробега электрон приобретает скорость , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n - число электронов проводимости в единице объема. Величина есть не что иное, как удельная мощность тока. Множитель при совпадает со значением (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемко­сти электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость ди­электриков, у которых нет свободных элек­тронов. Согласно закону Дюлонга и Пти (см. §73), теплоемкость одноатомного кристалла равна 3 R. Учтем, что теплоем­кость одноатомного электронного газа равна 3/2 R. Тогда атомная теплоемкость металлов должна быть близка к 4,5 R. Однако опыт доказывает, что она равна 3 R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электрон­ной теорией.

Указанные расхождения теории с опы­том можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а зако­нам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. По­этому объяснить затруднения элементар­ной классической теории электропровод­ности металлов можно лишь квантовой тео­рией, которая будет рассмотрена в даль­нейшем. Надо, однако, отметить, что клас­сическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводи­мости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой тео­рией простой и наглядной.

  1. Несамостоятельный и самостоятельный газовые разряды.

Несамостоятельный газовый разряд. Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа. Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке ниже.

   
 

 

+ -


Самостоятельный газовый разряд.

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом. Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

I

 

   
 

 

27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.

Зако́нАмпе́ра — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией :

.

Модуль силы Ампера можно найти по формуле:

,

где — угол между векторами магнитной индукции и тока.

Сила максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ():

.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения [1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментамиэлектронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Магни́тнаяинду́кция векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля [1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Коэффициент полезного действия

Общее выражение для коэффициента полезного действия имеет вид

η = Р21. (6.10)

Для генераторов Р2 — активная мощность, отдаваемая в сеть; Р1 — механическая мощность, затрачиваемая на вращение вала ге­нератора. Для двигателей Р2 — механическая мощность на валу и Р1 — активная электрическая мощность, потребляемая двигателем.

Расчет электрических машин обычно проводят, исходя из задан­ной мощности Р2, поэтому для любых значений нагрузки КПД, %, удобнее рассчитывать по формуле

(6.11)

где Р1 и Р2 — потребляемая мощность, Вт, и нагрузка, для которой определяется КПД; ΣP — сумма всех потерь в машине при данной на­грузке, Вт.

Современные электрические машины имеют высокий КПД. Так, КПД машин мощностью несколько тысяч и более киловатт достига­ет 95...98 %, мощностью несколько сот киловатт — 88...92 %, мощ­ностью около 10 кВт — 83... 88 %. Лишь КПД машин малой мощно­сти, до нескольких десятков ватт, составляет 30...40 %.

КПД электрической машины изменяется с изменение



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2023-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: