СВОЙСТВА ТВЁРДЫХ ВЕЩЕСТВ




ФИЗИЧЕСКИЕ СВОЙСТВА


Физические свойства твёрдых веществ в большей степени зависят от типа химической связи и от структуры. Под физическими свойствами твёрдых тел понимается их специфическое поведение при воздействии определённых сил и полей. Существует три основных способа воздействия на твёрдые тела, соответствующая трём основным видам энергии: механический, термический и электромагнитный. Соответственно выделяют три основные группы физических свойств.

Механические свойства связывают механические напряжения и деформации тела, согласно результатам широких исследований механических и реологических свойств твёрдых тел, выполненных школой академика П. А. Ребиндера, можно разделить на упругие, прочностные, реологические и технологические. Кроме того, при воздействии на твёрдые тела жидкостей или газов проявляются их гидравлические и газодинамические свойства.

К термическим относят свойства, которые оказываются под воздействие тепловых полей. В электромагнитные свойства условно можно отнести радиационные, проявляющиеся при воздействии на твёрдое тело потоков микрочастиц или электромагнитных волн значительной жёсткости (рентгеновских лучей, гамма-лучей).

Легчайшим известным твёрдым материалом является аэрогель. Некоторые виды аэрогеля имеют плотность 1,9 мг/см³ или 1,9 кг/м³ (1/530 плотности воды).

 

 

МЕХАНИЧЕСКИЕ СВОЙСТВА

В покое твёрдые тела сохраняют форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформация может быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твёрдого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твёрдого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжению и сжатию, а также сдвигу, изгибу и кручению.

Диэлектрики — это вещество, которое не проводит, или плохо проводит электрический ток. Одним из основных свойств таких материалов является способность поляризации в электрическом поле.

Поляризация – это процесс ограниченного смеще­ния или ориентации имеющих электрические заряды частиц ди­электрика. По этому свойству диэлектрики делятся на «полярные», молекулы которых имеют постоянный, не равный нулю электрический момент, и «неполярные», молекулы которых приобретают электрический момент только при воздействии внешнего электрического поля.

 

ФАЗОВЫЕ ПЕРЕХОДЫ

При повышении температуры твёрдого тела переходят в жидкое или газообразное состояние. Переход твёрдого тела в жидкость называется плавлением,а переход в газообразное состояние, минуя жидкое, ─ сублимацией. Переход к твёрдому телу (при понижении температуры) ─ кристаллизация, к аморфной фазе ─ стеклование.

Существуют также фазовые переходы между твердотельными фазами (рисунок 1), при которых изменяется внутренняя структура твёрдых тел, становясь упорядоченной при понижении температуры.

Рисунок 1

 

При атмосферном давлении и температуре Т > 0 К все вещества в природе затвердевают. Исключение составляет гелий, для кристаллизации которого необходимо давление 24 атм.

 

 

МЕХАНИЧЕСКИЕ СВОЙСТВА

В покое твёрдые тела сохраняют форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформация может быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твёрдого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твёрдого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжению и сжатию, а также сдвигу, изгибу и кручению.

При пластической деформации начальная форма не сохраняется. Характер деформации зависит также от времени, в течение которого действует внешняя сила. Твёрдое тело может деформироваться упруго при мгновенном действии, но пластически, если внешние силы действуют длительное время. Такое поведение называется ползучестью. Одной из характеристик деформации является твёрдость тела — способность сопротивляться проникновению в него других тел.

Каждое твёрдое тело имеет присущий ему порог деформации, после которого наступает разрушение. Свойство твёрдого тела сопротивляться разрушению характеризуется прочностью. При разрушении в твёрдом теле появляются и распространяются трещины, которые в конце концов приводят к разлому.

К механическим свойствам твёрдого тела принадлежит также его способность проводить звук, который является волной, переносящий локальную деформацию с одного места в другое. В отличие от жидкостей и газов в твёрдом теле могут распространяться не только продольные звуковые волны, но и поперечные, что связано с сопротивлением твёрдого тела деформации сдвига. Скорость звука в твёрдых телах в целом выше, чем в газах, в частности в воздухе, поскольку межатомное взаимодействие гораздо сильнее. Скорость звука в кристаллических твёрдых телах характеризуется анизотропией, то есть зависимостью от направления распространения. Сжимаемостьтвердых веществ практически равна нулю. Все твердые вещества имеют определенный объем. Одним из наиболее известных свойств твердых веществ является их способность сохранять свою форму. По сравнению с газами и жидкостями твердые вещества могут выдерживать значительные внешние нагрузки. Плотность каждого вещества в твердом состоянии значительно больше, чем в газообразном состоянии, и несколько больше, чем в жидком. Исключение составляет вода, которая в жидком состоянии обладает большей плотностью, чем лёд.

 

СЖИМАЕМОСТЬ


Сжимаемостьтвердых веществ практически равна нулю. Все твердые вещества имеют определенный объем. Одним из наиболее известных свойств твердых веществ является их способность сохранять свою форму. По сравнению с газами и жидкостями твердые вещества могут выдерживать значительные внешние нагрузки. Плотность каждого вещества в твердом состоянии значительно больше, чем в газообразном состоянии, и несколько больше, чем в жидком. Исключение составляет вода, которая в жидком состоянии обладает большей плотностью, чем лёд.

 

ТЕПЛОВЫЕ СВОЙСТВА


Важнейшим тепловым свойством твёрдого тела является температура плавления — температура, при которой происходит переход в жидкое состояние. Другой важной характеристикой плавления является скрытая теплота плавления. В отличие от кристаллов, в аморфных твёрдых телах переход к жидкому состоянию с повышением температуры происходит постепенно.

Его характеризуют температурой стеклования — температурой, выше которой материал почти полностью теряет упругость и становится очень пластичным. Изменение температуры вызывает деформацию твёрдого тела, в основном повышение температуры приводит к расширению. Количественно она характеризуется коэффициентом теплового расширения. Теплоёмкость твёрдого тела зависит от температуры, особенно при низких температурах, однако в области комнатных температур и выше, множество твёрдых тел имеют примерно постоянную теплоёмкость (закон Дюлонга — Пти). Переход к устойчивой зависимости теплоёмкости от температуры происходит при характерной для каждого материала температуре Дебая. От температуры зависят также другие характеристики твердотельных материалов, в частности механические: пластичность, текучесть, прочность, твёрдость.

Таким образом, кристаллические твердые вещества имеют строго определенную температуру плавления, а аморфные твердые вещества, как, например, стекла, размягчаются в некотором интервале температур.

Все твердые вещества характеризуются определенным давлением пара, хотя оно, как правило, очень мало. Это особенно относится к твердым веществам ионного типа.

 

ПЛАСТИЧЕСКИЕ СВОЙСТВА

Твердые вещества могут значительно отличаться друг от друга по своим пластическим свойствам. Некоторые из них, например ионные вещества, обычно раскалываются под нагрузкой. Такое свойство называется хрупкостью. Другие, как, например, резина, являются упругими. После удаления внешней нагрузки они приобретают свою первоначальную форму. Многие металлы обладают свойствами ковкости и тягучести. Ковкий металл можно превратить ударами в тонкий лист, а тягучий металл вытянуть в тонкую проволоку.

 

АМОРФНОЕ СОСТОЯНИЕ

 

Аморфное состояние — это твердое состояние вещества, характеризующееся наличием ближнего порядка в размещении частиц, а также изотропностью — одинаковыми свойствами в любом направлении. Аморфное состояние веществ менее стабильно по сравнению с кристаллическим, так аморфные вещества могут переходить в кристаллическое состояние под действием механических нагрузок или при изменении температуры. Этот процесс в разных веществах проходит с разной скоростью. Для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Однако некоторые вещества могут находиться в аморфном состоянии в течение достаточно большого периода. Например, вулканическое стекло (возраст которого доходит до нескольких миллионов лет), обычное стекло, смолы, воск, большинство гидроксидов переходных металлов и тому подобное.

При определенных условиях в аморфном состоянии могут находиться почти все вещества, кроме металлов и некоторых ионных соединений. С другой стороны, известны вещества, способные существовать только в аморфном состоянии (органические полимеры с неравномерной последовательностью элементарных звеньев).

Физические и химические свойства вещества в аморфном состоянии могут существенно отличаться от ее свойств в кристаллическом состоянии. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Переход твердых веществ в жидкое состояние в зависимости от строения имеет свои особенности. Для кристаллического вещества плавления происходит при определенной температуре, которая является фиксированной для данного вещества, и сопровождается скачкообразным изменением ее свойств (плотность, вязкость и т.д.). Аморфные вещества, напротив, переходят в жидкое состояние постепенно, в течение некоторого интервала температур (так называемый интервал размягчения), во время которого происходит плавное, медленное изменение свойств.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400оС, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами. Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

 

 

ЗАКЛЮЧЕНИЕ

 

Атомы и молекулы, составляющие твёрдое тело, плотно упакованы вместе. Другими словами, молекулы твёрдого тела практически сохраняют своё взаимное положение относительно других молекул и удерживаются между собой межмолекулярным взаимодействием.

Многие твёрдые тела содержат в себе кристаллические структуры. При этом все кристаллы являются твёрдыми телами. Кроме, естественно, жидких кристаллов.

К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов, а также под воздействием различных излучений – света, рентгеновских лучей, пучков электронов, нейтронов и т.п. Значительная часть лабораторного оборудования, необходимая для изучения этих свойств, сама состоит из твердотельных устройств. Химические свойства твердых тел особенно существенны при изучении поверхностных явлений.

Твердое тело состоит из атомов. Само его существование указывает на наличие интенсивных сил притяжения, связывающих атомы воедино, и сил отталкивания, без которых между атомами не было бы промежутков. В результате таких взаимодействий атомы твердого тела частично теряют свои индивидуальные свойства, и именно этим объясняются новые, коллективные свойства системы атомов, которая называется твердым телом. Какова природа этих сил? Свободный атом состоит из положительно заряженного ядра и некоторого числа отрицательно заряженных электронов (масса которых значительно меньше массы ядра). Хорошо известные кулоновские (электрические) силы, действующие между заряженными частицами, создают притяжение между ядром и электронами, а также взаимное отталкивание между электронами. Поэтому твердое тело можно рассматривать как состоящее из системы взаимно отталкивающихся ядер и системы взаимно отталкивающихся электронов, причем обе эти системы притягиваются друг к другу. Физические свойства такого объекта определяются двумя фундаментальными физическими теориями – квантовой механикой и статистической механикой. Хотя характер взаимодействий между частицами известен, их необычайно большое число (~1022 ядер и еще больше электронов в 1 см3) не позволяет дать точное теоретическое описание твердого тела.

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Вест А.Л. Химия твёрдого тела [Текст] / Н.Л. Глинка. – Л: Химия, 1988. – 356 с.

2. Тарасевич Б.М. Физика диэлектрических материалов [Текст] / Б.М. Тарасевич. – М: Энергоиздат, 1982. – 320 с.

3. Павлов П.В. Физика твердого тела [Текст] / П.В. Павлов. – М: Высшая школа, 2000. –494 с.

4. Фельц А. Аморфные и стеклообразные неорганические твердые тела [Текст] / А. Фельц. - М.: Мир, 1986. - 556 с.

5. Хенней Н. Химия твердого тела [Текст] / Н. Хенней. - М.: Мир, 1971. -223 с.

6. Аморфные металлические сплавы / В.В. Немошкаленко и др. / отв. ред. В.В. Немошкаленко. – Киев: Наукова думка, 1987. -- 248 с.Бородулин В.Н. Диэлектрики [Текст] / В.Н. Бородулин. – Изд-во МЭИ. М: 1993. –60 с.

7. Китель Ч. Введение в физику твердого тела [Текст] / Ч. Китель. –М: Наука, 1978. –792 с.

8. Сканави Г.И. Физика диэлектриков. Область слабых полей [Текст] / Г.И. Сканави. – М: ГТТИ, 1949. –500 с.

9. Сканави Г.И. Область сильных полей [Текст] / Г.И. Сканави. – М: ГТТИ, 1958. –908 с.

10. Богородицкий Н.П. Электротехнические материалы [Текст] / Н.П. Богородицкий – Л: Энергоатомиздат, 1985. – 384 с.

11. Рябов, А.В. Современные способы выплавки стали в дуговых печах: учебное пособие [Текст] / А.В. Рябов, И.В. Чуманов, М.В. Шишимиров. -- Челябинск: Изд-во ЮУрГУ, 2007. -- 188 с.

12. Кучинский Г.С Изоляция установок высокого напряжения [Текст] / Г.С. Кучинский. – М: Энергоатомиздат, 1987.- 368 с.

13. Волокобинский Ю.М. Теория диэлектриков [Текст] / Ю.М. Волокобинский. М: Энергия, 1965. – 342 с.

14. Губкин А.Н. Физика диэлектриков [Текст] / А.Н. Губкин – М: Высшая школа, 1971. – 272 с.

15. Судзуки, К Судзуки, К. Аморфные металлы / К. Судзуки, Х. Фудзимори, К. Хасимото; под ред. Ц. Масумото. –М: Металлургия, 1987. –М: 328 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-07-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: