Солнечная система как комплекс тел, имеющих общее происхождение




1.Описать процесс образования планет и Солнечной системы

2. В конспекте обязательно должны быть выделенные желтым определения и рисунки!

Планетные системы - связанные силами взаимного тяготения системы космических объектов, звезд и планетных тел, обладающие общностью происхождения и перемещающиеся в пространстве как единое целое.

Планеты - класс планетных тел с массами 1023-1027 кг, обладающих сферической формой и ярко выраженным дифференцированным внутренним строением. Планеты обладают собственной энергетикой, основанной на энергии гравитационного сжатия, распада радиоактивных элементов и других процессах. Энергия собственного излучения планет сравнима или даже превосходит по величине энергию, сообщаемую планете центральным светилом - звездой.

Планеты земной группы с массами 1023-1025 кг и средней плотностью вещества 4-5,5 г/см3 образуются в горячей зоне протопланетного облака и состоят в основном из тяжелых химических элементов - соединений металлов, силикатов и т. д. Планетами земной группы Солнечной системы являются Меркурий, Венера, Земля и Марс.

Планеты-гиганты массами 5× 1025-2,5× 1027 кг и средней плотностью 0,7-1,7 г/см3 образуются, вероятно, в холодной зоне протопланетного облака и состоят в основном из водорода, гелия и легких химических соединений. Планетами-гигантами Солнечной системы являются Юпитер, Сатурн, Уран и Нептун.

В настоящее время астрономы наблюдают планеты-гиганты из планетных систем некоторых близких звезд и вокруг некоторых пульсаров. К середине 2001 года количество известных планетных систем превысило 60. Все они не похожи на Солнечную систему. Значительная часть экзопланет имеет сильно вытянутые эллиптические орбиты с эксцентриситетом до 0,5-0,6 (в Солнечной системе эксцентриситет планетных орбит не превышает 0,2). Часть планет-гигантов – "горячие юпитеры" – вращается по очень близким к звезде круговым орбитам. Открыта планетная система в тесной двойной звездной системе, состоящей из карликов классов К и М в1,5-2 а.е. друг от друга; планета-гигант вращается вокруг центра масс системы на расстоянии 5-7 а.е. Нейтронная звезда-пульсар PSR 1257+12 в созвездии Девы имеет 4 планеты; ничто земное не прожило бы и секунды в вечной тьме под потоками радиации, омывающими поверхности этих планет 160 раз в секунду.

Происхождение и развитие космических объектов изучает отдельный раздел астрономии – наука космогония.

Одним из главных направлений исследований космогонии является изучение условий и процессов возникновения планетных систем и планетных тел.

Планетные системы формируются в ходе образования звезд из вещества космических газопылевых облаков (туманностей), обогащенных тяжелыми химическими элементами и сжимающихся под действием сил тяготения. Момент импульса сжимающегося вращающегося протозвездного облака (L > 1053 г/смс) распределяется в нем неравномерно. Внутренними областям, сосредоточившими в себе до 99% массы облака, передается всего 1-2% начального момента импульса, и они сжимаются в протозвезду. Внешним областям облака передается до 98-99% момента импульса и они преобразуются в протопланетный диск, вращающийся вокруг молодой звезды. Плотность вещества в протопланетном диске превышает 10-18 г/см3, размеры частиц космической пыли составляют около 0,1 мкм.

Рис. 2. Формирование Солнечной системы как пример образования планетных систем

Газопылевой диск вокруг формирующейся звезды очень быстро "сплющивается" под действием сил гравитации и центробежной силы, направленных к наиболее плотной части диска в плоскости его вращения. Спустя несколько сотен тысяч лет диск имеет массу около 0,1М¤, размеры от 0,2 до 50-70 а.е. и толщину около 0,001 диаметра. Размеры пылевых частиц увеличиваются в результате слипания до 10 мкм; их орбиты становятся почти круговыми. Акустические ударные волны, распространяющиеся в облаке при сжатии протозвездного сгустка вещества и возгорании молодой звезды, способствуют возникновению неоднородностей в диске. Турбулентные вихри ускоряют движение частиц и ведут к возникновению нескольких газопылевых утолщений (уплотнений) - "колец сжатия", распадающихся затем на более мелкие. Эффект кольцевого сжатия не зависит от начальной массы и размеров диска и возникает при формировании любых планетных систем.

Внутри колец в результате внутренних динамических процессов формируются многочисленные первоначальные газопылевые сгущения. Крупные частицы присоединяют к себе мелкие, возникают плотные сгустки протопланетного вещества - планетезимали - зародыши планетных тел массами до 6× 1027 кг и размерами свыше 1-100 км, медленно сжимающиеся под действием собственного тяготения.

Распад газопылевого диска с образованием "колец сжатия" и последующим формированием планетезималей происходит быстрее, чем за 106 лет. На образование планетных тел затрачивается не более 10-20% вещества протопланетного диска: основная масса космической пыли и газа рассеиваются в межзвездном пространстве.

Скорость и направление эволюции протопланетного облака зависит от его массы. Раннее формирование массивныхпланетезималей ведет к неустойчивости протопланетного диска, ускоряет его эволюцию. Приливное взаимодействие планетезималей обусловливает распределение масс и орбит будущих планет.

При своем движении вокруг новорожденной звезды планетезимали создают в пространстве протопланетного диска спиральные волны сжатия и "аккумулируют" (собирают) из него вещество. Их масса и размеры увеличиваются до полного истощения протопланетного диска, пока все вещество из окружающего пространства не выпадет на их поверхность.

В околозвездном пространстве плотность вещества протопланетного облака уменьшается намного быстрее, нежели на его периферии: магнитное поле вращающейся звезды увлекает раскаленную газопылевую "смесь": вещество частично аккрецирует вдоль магнитно-силовых линий на поверхность звезды, а частично "выталкивается" прочь от нее; этому способствует давление электромагнитного излучения и потоков элементарных частиц звездного ветра. Вокруг звезды на расстояние десятков ее радиусов образуется почти полностью свободная от вещества "зона прозрачности".

При увеличении размеров планетезималей свыше 2000 км протопланетный диск преобразуется в утончающееся со временем газопылевое кольцо, внутренняя граница которого разделяет зону сформировавшихся планет от зоны, в которой процесс планетообразования еще не завершился.

В течение нескольких миллионов лет в быстро сжимающемся и редеющем протопланетном диске может сформироваться несколько гигантских протопланет. Сила их тяготения вместе с возмущающим воздействием спиральных волн плотности сильно изменяет характеристики движения протопланет и остатков вещества протопланетного диска. В результате торможения трением в веществе протопланетного облака и резонансного взаимодействия со спиральными волнами плотности они теряют свою механическую энергию, разогреваются и сближаются с формирующейся звездой. Взаимные возмущения движения ведет к увеличению эксцентриситетов орбит планетных тел: часть протопланет начинает вращаться по сильно вытянутым эллиптическим орбитам, а часть приобретает параболические или даже гиперболические орбиты и навсегда покидает планетную систему; наибольшие шансы уцелеть имеют протопланеты, вращающиеся по круговым орбитам в "зоне прозрачности" в непосредственной близости от молодой звезды.

При "аккумуляции" планетезималей механическая энергия падающего на них вещества превращается в тепловую: протопланетное тело разогревается, и при температуре свыше 1500 К в центре тел начинается выделение газов. Гравитационное сжатие увеличивает температуру в недрах тел до нескольких тысяч кельвин. Разогреву протопланет способствует мощная ударная бомбардировка: между их орбитами вращаются миллиарды мелких и мельчайших планетезималей и сгустков вещества. В недрах формирующихся протопланет начинаются процессы дифференциации (разделения) планетных оболочек и дегазации: тяжелые компоненты и соединения опускаются вниз, к центру планеты, а легкие поднимаются вверх, к поверхности. Давление, плотность и температура вещества близ центров планет значительно повышаются и вещество качественно изменяется: образуются оболочки планет – первичное ядро и мантия, в расплавленных недрах генерируется магнитное поле, выделяющаяся при расслоении, гравитационном сжатии и распаде радиоактивных элементов энергия путем конвекции переносится к поверхности планет. Легкие вещества, всплывая на поверхность, образуют первичные кору (литосферу), гидросферу и атмосферу планеты.

Так образуются планетные тела, дальнейшая эволюция которых зависит от их массы и расстояния до центрального светила (звезды или планеты).

Так, вероятно, сформировалось большинство известных сейчас планетных систем.

Формирующиеся протопланетные диски наблюдаются в инфракрасном диапазоне вокруг нескольких сотен молодых звезд. У Веги, a Лиры, внутренний диаметр диска составляет 44 а.е. при внешнем диаметре 490 а.е.; некоторые данные указывают на существование по крайней мере одной уже сформировавшейся планеты-гиганта вдвое массивнее Юпитера на расстоянии 54 а.е. от звезды. УФомальгаут, a Южной Рыбы внутренний диаметр диска 51 а.е. при внешнем диаметре 900 а.е. Планеты сформировались также у звезд b Живописца и у e Эридана – в протопланетном диске диаметром 0,8/580 а.е. на расстоянии 60 а.е. от звезды (масса планеты около 0,32 массы Юпитера). В центре формирующейся планетной системы объекта NGC 2071 (1300 св. лет от Земли) наблюдается протозвезда массой около 1 М¤, вокруг которой вращается протопланетный диск размерами около 30 а.е. и массой 0,01 М¤, в недрах которого началось образование планетоземалей.

В результате различий в первоначальном строении и составе, масштабах и особенностях турбулентных движений вещества внутри протопланетного диска данной массы могут образоваться планетные системы с разным количеством планет с различными массами и законами межпланетных расстояний. Однако число возможных вариантов для протопланетного облака с определенной массой конечно: Солнечная система могла бы иметь не более 10 вариантов строения. Наибольший интерес вызывают варианты образования планетной системы, в состав которых входит объект массой от 989 до 5050 МÅ, который в ходе дальнейшей эволюции неизбежно превращается в коричневый или даже красный карлик - редчайший случай возникновения двойной звезды, обладающей планетной системой с широкой "зоной жизни" между звездами и сразу за карликом с малой светимостью. Если же начальная масса протопланетного облака была на 0,15 М¤ больше, частицы облака слились бы в единый звездоподобный спутник Солнца.

Открыто несколько десятков гигантских планетезималей и планет-гигантов массой 1,5 –2,5× 1027 кг, самостоятельно сформировавшихся из сгустков вещества в недрах плотных протозвездных туманностей.

Далее излагаются сведения об образовании Солнечной системы как имеющие наибольший научный и практический интерес и наиболее подробно изученный частный случай космогонии планетных систем:

Сжатие протосолнечного облака массой около 10 М¤ и последующее отделение протопланетного диска могло быть вызвано ударной волной при вспышке Сверхновой на расстоянии сотни световых лет от туманности; взрыв внедрил в ее состав изотопы тяжелых химических элементов, урана и тория. Начальная масса протозвездного диска составляла 0,01-0,1 М¤.

Температура в центральной плоскости протопланетного диска Солнечной системы уменьшалась с удалением от Солнца. Особенно сильно нагревалась ближайшая к звезде "горячая" зона облака: на расстоянии в 1 а.е. температура составляла 300-400 К.

Процесс образования планет земной группы в "горячей зоне" протопланетного облака на расстоянии от 0,3 до 2,5-3 а. е. от Солнца занял около 100 миллионов лет.

Вращение магнитного поля молодого Солнца, световое излучение и потоки элементарных частиц солнечного ветра "выметали" вещество из ближайших окрестностей Солнца, образуя "зону прозрачности". В первую очередь удалялись легкие химические элементы - водород и гелий, концентрация которых постепенно сдвигалась к границам Солнечной системы, порождая различие в химическом составе планет земной группы и планет-гигантов. Зона формирования землеподобных планет очистилась от первичного газа еще до того, как планетезимали "набрали" половину своей окончательной массы. Сфероидальные частицы-хондры из тугоплавкого силикатного вещества и пыль под действием сил гравитации и электростатического притяжения стали сближаться и слипаться, образуя сгустки хондритного вещества. Они концентрировались в плоскости газопылевого диска и в результате трения по спирали постепенно сближались с Солнцем. Присоединяя к себе мелкие сгустки и частицы пыли, они увеличивались до километровых размеров и становились планетезималями. Вероятность взаимодействия многочисленных планетезималей между собой была высока (1 столкновение в 1000 лет); при небольшой взаимной скорости они объединялись, при высокой – разрушались на фрагменты, быстро входившие в состав других планетезималей. За 20000 лет в протопланетном диске образовались сотни объектов размером с Луну; за последующие 10 млн. лет самые крупные из них достигли размеров Земли. Дальнейшему увеличению массы, разогреву, первичной дифференциации недр и дальнейшей эволюции планет способствовала интенсивная ударная бомбардировка: общая масса вещества между орбитами прото-Венеры и прото-Марса достигала 0,01 МÅ.

Образование планет-гигантов происходило в "холодной зоне" протопланетного диска на расстоянии от 4 до 40 а. е. от Солнца, где температура вещества туманности уменьшалась до 10-20 К в 10-20 а. е. от Солнца. Частиц водородно-гелиевых "снежинок" и водяного льда в этой области было в десятки раз больше, нежели пылинок. Процесс планетообразования, вероятно, шел в 2 этапа: вначале образовались твердые ядра массой до 2 МÅ: у Юпитера за 30 миллионов лет, у Сатурна за 200 миллионов лет, у Урана и Нептуна за 1 млрд. лет, после чего на ядра начиналось выпадение (аккреция) газа из окружающего пространства, продолжавшееся от 1 до 10 миллионов лет, при этом температура наружных слоев Юпитера достигала 5000 К, а Сатурна - 2000 К, что определило силикатный состав их ближайших спутников. Низкое содержание водорода и гелия в атмосферах Урана и Нептуна объясняется тем, что к моменту окончания первого этапа их формирования солнечный ветер "вымел" эти газы за пределы Солнечной системы.

Ряд ученых предполагает, что образование планет-гигантов из сгустков вещества протозвездной туманности началось еще в эпоху формирования прото-Солнца. Также есть гипотеза о том, что начальные этапы формировании Урана и Нептуна происходили значительно ближе к Солнцу, а изменение орбит их планетезималей произошло в результате возмущающего взаимодействия с пра-Юпитером, пра-Сатурном и других планетезималями, часть которых при этом покинула пределы Солнечной системы, а другие стали спутниками планет-гигантов (Тритон, Феба и др.) или столкнулась с ними. Наиболее крупные спутники и системы колец, предположительно, сформировались в аккреционном диске планет-гигантов.

В промежутке между "горячей" и "холодной" зонами протопланетного облака из вещества общей массой до 8× 1024 кг образовалось несколько десятков планетезималей размерами свыше 1000 км. Наиболее крупные имели размеры до 8000 км, в их недрах происходили процессы частичной дифференциации вещества с образованием железного (железокаменного) ядра. Все они обладали очень неустойчивыми, подверженными возмущающему влиянию Юпитера орбитами. В результате гравитационного взаимодействия и столкновений между собой и более мелкими планетезималями в течение первого миллиарда лет существования Солнечной системы часть этих тел покинула ее пределы. Оставшиеся изменили характеристики своих орбит и (или) подверглись дроблению и разрушению на мелкие осколки, образовавшие пояс астероидов. Часть астероидов образовалась путем слипания мелких планетезималей при их взаимодействии (столкновениях) между собой, что вело к их уплотнению; за счет радиоактивного распада элементов (в основном, изотопа 26Al) их недра разогревались. В дальнейшем столкновения привели к разрушению и дроблению родительских тел. В результате возмущений со стороны планет-гигантов их орбиты постоянно изменялись; в настоящее время в поясе астероидов осталась лишь 1/2000 часть начального вещества. Мелкие реликтовые планетезимали могли сохраниться до нашего времени.

Кометные ядра и кентавры образовались аналогичным путем в "холодной" зоне протопланетного облака на расстоянии до 50 а. е. от Солнца, где уцелело огромное число мелких и мельчайших планетезималей: так возникли кометные пояса меж орбитами планет-гигантов. Значительную часть кометных ядер была "выброшена" гравитационными возмущениями формирующихся планет-гигантов на окраины Солнечной системы и, частично, в межзвездное пространство: так образовались пояс Койпера и окружающее Солнечную систему сферическое облако Хиллса и квазисферическое облако Оорта.

Своеобразие характеристик движения планет: разный наклон оси вращения к плоскости эклиптики (у Урана под углом 97њ 55¢), различные периоды осевого вращения (у Венеры - обратное вращение вокруг своей оси), возможно, обусловлено приливными взаимодействиями планетезималей и (или) многочисленными прямыми и фронтальными соударениями крупных планетезималей с мелкими на последних стадиях образования из вещества протопланетного диска.

Устойчивость и почти круговая форма орбит большинства планет Солнечной системы, вероятно, обусловлены стабилизирующим влиянием тяготения Солнца и Юпитера: самая массивная планета вращается в 5 а.е. от Солнца по орбите с малым эксцентриситетом (0,04).

Изложение нового материала завершается кратким описанием структуры, состава и строения Солнечной системы:

Солнечная система - система космических объектов, состоящая из звезды класса G2 Солнце и вращающихся вокруг нее под действием сил тяготения планетных тел: 9 больших планет - Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона; 62 известных спутников планет (планетоидов и астероидов); 105-106 малых планет - астероидов; 1013-1014 комет и бесчисленного множества метеорных тел, космической пыли и газа. Пространство Солнечной системы размерами свыше 3× 1016 м является носителем гравитационных и магнитных полей и пронизано электромагнитным излучением и потоками элементарных частиц. Возраст Солнечной системы 4,5-5 миллиардов лет.

Солнце сосредоточивает в себе 99,866% массы Солнечной системы, на долю больших планет приходится 0,134% массы, спутников планет - 0,00004%, астероидов - 0,0000001%, комет - 0,0003% и метеорных частиц 0,000000000001%. Геометрический центр Солнечной системы практически совпадает с центром Солнца.

Большие планеты Солнечной системы обращаются вокруг Солнца в направлении его осевого вращения по почти круговым орбитам, слабо наклоненным друг к другу и лежащим вблизи плоскости солнечного экватора. Большинство планет вращается вокруг своей оси в том же направлении. Спутники планет в основном вращаются вокруг планет в том же направлении, в котором происходит осевое вращение планет, но некоторые, самые далекие спутники планет обладают обратным движением. Большинство орбит астероидов лежит между орбитами Марса и Юпитера. Открыты сотни силикатно-ледяных и ледяных планетоидов, кентавров и кометных ядер пояса Койпера, орбиты которых лежат за орбитой Плутона на расстоянии около 50-70 а. е. от Солнца. Общее число метеороидов размерами свыше 1 км на расстоянии до 100 а.е. от Солнца достигает 1 миллиона. В гигантском облаке кометных ядер, окружающем Солнечную систему, выделяют 2 слоя: сферическое облако Хиллса из 1013-1014 ледяных метеороидов на расстоянии до 20000 а.е. и квазисферическое облако Оорта из 1011-1012 объектовна расстоянии до 105 а. е. от Солнца. Под действием возмущений от проходящих вблизи звезд кометные ядра в облаке меняют свои орбиты и часть их устремляется внутрь Солнечной системы; орбиты известных комет обладают большим эксцентриситетом и наклоном к эклиптике.

За границу Солнечной системы принимают расстояние от Солнца до гелиопаузы - точки, в которой давление солнечного ветра уравновешивается давлением межзвездной среды.

Рис. 4. Строение Солнечной системы

Средние расстояния планет от Солнца подчиняются эмпирическому закону, сформулированному в конце XVIII века астрономами И. Тициусом и И. Боде: r = 0.3*2n + 0.4 (а. е.), где r - расстояние от планеты до Солнца. Для Меркурия n = -¥; для Венеры n = 0; для Земли n = 1; для Марса n = 2; для Юпитера n = 4 и т. д.

В настоящее время ближайшей к Солнечной системе звездой является Проксима Центавра, красный карлик (11,05m), компонент тройной звездной системы a Центавра, расположенная на расстоянии 270 000 а.е. (4,2 световых года). В течении ближайшего миллиона лет около Солнечной системы на расстоянии до 0,5 св. года (30 000 а.е.) пройдет 8 звезд; наибольшее сближение испытает красный карлик Глизе 710 (М* ~ 0,3М¤) из созвездия Змееносца.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: