Внехромосомные факторы наследственности.




Внехромосомные факторы наследственности входят в состав многих микроорганизмов, особенно бактерий. Они представлены плаз-мидами, транспозонами и Is-последовательностями (англ. insertion - вставка, sequence - последовательность), которые являются молекулами ДНК, отличающимися друг от друга молекулярной массой, объемом закодированной в них информации, способностью к автономной репликации и другими признаками.

Плазмиды, транспозоны и Is-последовательности не являются генетическими элементами, жизненно необходимыми для бактериальновой клетки, поскольку они не несут информации о синтезе фермен-в«. участвующих в пластическом или энергетическом метаболизме. Вместе с тем они могут придавать бактериям определенные селективные преимущества, например резистентность к антибиотикам.

Плазмиды несут две функции - регуляторную и кодирующую. Первая состоит в компенсации нарушений метаболизма ДНК клетки хозяина. Например, при интегрировании плаз-виды в состав поврежденного бактериального генома, не способного к репликации его функция восстанавливается за счет плазмидного репликона.

Кодирующая функция плазмид состоит во внесении в бактериальную клетку новой информации, о которой судят по приобретенному признаку, например образованию пилей (F-плазмида), резистентности к антибиотикам (R-плазмида), выделению бактериоцинов (Col-плазмида) и т.д.

Переход плазмиды в автономное состояние и реализация записанной в ней информации часто связаны с индуцирующими воздействиями внешней среды. В некоторых случаях продукты плазмидных генов могут способствовать выживанию несущих их бактерий. Самостоятельная репликация плазмидной ДНК способствует ее сохранению и распространению в потомстве. Встраивание плазмид, так же как и профагов, происходит только в гомологичные участки бактериальной хромосомы, в то время как Is-последовательностей и транс-позонов - в любой ее участок.

Транспозоны представляют собой нуклеотидные последовательности, включающие от 2000 до 20 500 пар нуклеотидов, которые несут генетическую информацию, необходимую для транспозиции. При включении в бактериальную ДНК они вызывают в ней дупликации, а при перемещении - делеции и инверсии. Транспозоны могут находиться в свободном состоянии в виде кольцевой молекулы, неспособной к репликации. Она реплицируется только в составе бактериальной хромосомы. При этом новые копии транспозонов могут мигрировать в некоторые плазмиды и ДНК фагов, которые, проникая в бактериальные клетки, способствуют их распространению в популяции. Таким образом, важнейшим свойством транспозонов является их способность к перемещению с одного репликона (хромосомная ДНК) на другой (плазмида) и наоборот. Кроме того, некоторые транспозоны, так же как и плазмиды, выполняют регуляторную и кодирующую функции. В частности, они могут нести информацию для синтеза бактериальных токсинов, а также ферментов разрушающих или модифицирующих антибиотики.

Транспозоны имеют особые концевые структуры нескольких типов, которые являются маркерами, позволяющими отличать их от других фрагментов ДНК. Это позволило обнаружить их не только у бактерий и дрожжей, но и в клетках растений, насекомых, позвоночных животных и человека. При интеграции транспозонов в хромосому клеток животных или человека они приобретают удивительное сходство с про-вирусами, находящимися в составе их хромосом.

Is-последовательности (англ. insertion - вставка, sequence - последовательность) представляют собой транспозируемые элементы, которые также называются «вставки последовательностей оснований». Это фрагменты ДНК длиной 1000 пар нуклеотидов и более. В Is-последовательностях содержится информация, необходимая только для их транспозиции, т.е. перемещения в различные участки ДНК.

Вследствие такого рода перемещений Is-последовательности могут выполнять ряд функций.

Координировать взаимодействие транспозонов, плазмид и уме ренных фагов как между собой, так и с хромосомой бактериальной клетки и обеспечивать их рекомбинацию.

Вызывать инактивацию гена, в которой произошла интеграция Ь-последовательности («выключение» гена), либо, будучи встроен ными в определенном положении в бактериальную хромосому, слу жить промотором (участками ДНК, регулирующих экспрессию под лежащих структурных генов бактерий-реципиентов), который вклю чает или выключает транскрипцию соответствующих генов, выполняя регуляторную функцию.

Индуцировать мутации типа делеций или инверсий при перемещении и дупликации в 5-9 парах нуклеотидов при включении в бактериальную хромосому.

Генная инженерия.

Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК[1].

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.

Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Фредериком Сенгером и американским учёным Уолтером Гилбертом (Нобелевская премия по химии 1980 года). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Они происходят под действием, например, мутагенов — химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Все методы генетической инженерии (англ. Genetic engineering techniques) применяются для осуществления одного из следующих этапов решения генно-инженерной задачи:

· Получение изолированного гена.

· Введение гена в вектор для переноса в организм.

· Перенос вектора с геном в модифицируемый организм.

· Преобразование клеток организма.

· Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Применение в научных исследованиях.

Нокаут гена. Для изучения функции того или иного гена может быть применён нокаут гена (англ. gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию. Основные методы реализации: цинковый палец, морфолино и TALEN[3]. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а изменённые клетки имплантируют в бластоцисту суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка (GFP). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, её побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: