Обзор методов решения в Excel




Введение

 

Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)

 


Обзор методов решения в Excel

 

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

 

Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y' = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:

 

yk+1 = yk +(k1 +2k2 +2k3 +k4)/6, (2)

где

k1 = Fk h = F(xk, yk)h

k2 = F(xk +h/2, yk +k1 /2)h

k3 = F(xk +h/2, yk +k2 /2)h

k4 = F(xk +h, yk +k3)h,

k = 0,..., n-1

h = (xf -x0)/n (3)

 

1.2 Задача Коши

 

Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:

 

, (4)

 

Разобьём промежуток [a,b] на N частей . Обозначим, где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем:

1. явные: ) (5)

2. неявные: (6)

 

Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число k уже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (6) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее

 

1.3 Метод Эйлера

 

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что

 

уi=F(xi)(i=1,2,…, n) и F(x0)=y0. (7)

Таким образом, численные методы позволяют вместо нахождения функции У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (7) с начальным условием

x=x0, y(x0)=y0 (8)

 

Требуется найти решение уравнения (7) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi)»yi вычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (7), которая проходит через точку Мi. Если правая часть уравнения (7) в некотором прямоугольнике R{|x-x0|£a, |y-y0|£b}удовлетворяет условиям:

 

|f(x, y1)- f(x, y2)| £ N|y1-y2| (N=const), (9)

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

 

то имеет место следующая оценка погрешности:

 

|y(xn)-yn| £ hM/2N[(1+hN)n-1], (10)

 

где у(хn)-значение точного решения уравнения (7) при х=хn, а уn- приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn* оценивается формулой

 

|yn-y(xn)|»|yn*-yn|. (11)

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

 

1.4 Модифицированный метод Эйлера

 

Рассмотрим дифференциальное уравнение (7) y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.

 

Рисунок 1 Метод Эйлера в графическом виде

 

Получаем точку Мккк). Через Мк проводим касательную:

 

у=ук=f(xk,yk)(x-xk)

 

Делим отрезок (хкк1) пополам


xNk/=xk+h/2=xk+1/2 (12)

yNk/=yk+f(xk,yk)h/2=yk+yk+1/2

 

Получаем точку Nk/. В этой точке строим следующую касательную:

 

y(xk+1/2)=f(xk+1/2, yk+1/2)=αk (13)

 

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:

 

ук+1ккh

xk+1=xk+h

αk=f(xk+h/2, yk+f(xk,Yk)h/2) (14)

yk=yk-1+f(xk-1,yk-1)h (14)

 

(14)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (11) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

 

| ук*-у(хк)|=1/3(yk*-yk), (15)

 

где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена


y/=z (16)

z/=f(x,y,z)

 

Тем самым преобразуются начальные условия

 

y(x0)=y0, z(x0)=z0, z0=y/0 (17)

 

1.5 Практическая часть

 

Здесь решается уравнение dy/dx = 2x-y+x2 на интервале [0,2], начальное значение y(0)=0, для оценки точности задано также точное решение в виде функции u(x)=x2. Оценка погрешности делается в нормеL1, как и принято в данном случае

 

Рисунок 2




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: