Метод обратного умножения




В.Ф. Украинцев

Физический пуск реактора

МЕТОДИЧЕСКОЕ ПОСОБИЕ

П о к у р с у

«Динамика ядерных реакторов»

Обнинск 2005


 

В.Ф.Украинцев

 

Физический пуск реактора

 

АННОТАЦИЯ.

В пособии описаны теоретические основы и методика физического пуска реактора, включая измерение его основных характеристик – весов органов СУЗ, коэффициентов реактивности и т.п. Работа по физическому пуску проиллюстрирована на примере тренажера быстрого реактора, установленного на компьютерах каф. РКР.

ВВЕДЕНИЕ.

 

Одной из самых ответственных и потенциально опасных процедур в эксплуатации любого реактора является его пуск. Процесс пуска принято разделять на физический пуск и энергетический. В процессе физического пуска обычно определяют наиболее важные нейтронно-физические характеристики реактора.

В настоящем пособии изложены основы физических процессов в реакторе при пуске и методика физического пуска реактора. Кроме того, оно является руководством по выполнениюлабораторной работы «Физический пуск реактора», которая выполняется на персональном компьютере с использованием программ симулятора реактора БН-350. Программа разработана в Физико-энергетическом институте (г. Обнинск) под руководством А.И Воропаева.

 

Цели и задачи физпуска. В процессе физпуска мы должны определить и измерить следующие характеристики реактора:

· Критическую конфигурацию реактора (то есть загрузку топлива, или концентрацию топлива/поглотителя, или уровень заливки замедлителя);

· Измерить характеристики (скорости) движения органов СУЗ, их полные веса и градуировочные кривые (дифференциальную/интегральную);

· Провести калибровку нейтронной мощности;

· Измерить коэффициенты реактивности(по возможности).


 

Методика физического пуска

Основные формулы, определения, физический смысл процессов

 

Опишем вкратце основные понятия и модели, используемые в процессе физического пуска. Отметим, что в процессе физического (а затем и энергетического) пуска реактор находится в нескольких различных состояниях, которые мы описываем в рамках различных моделей (или одной модели, но с разными параметрами): подкритический реактор, критический реактор без обратных связей (т.е. коэффициентов и эффектов реактивности), критический реактор на мощности с обратными связями (т.е. с коэффициентами и эффектами реактивности).

 

Коэффициент умножения

 

Если ввести (или приблизить) источник нейтронов (q) в активную зону подкритического реактора, то полное число нейтронов в реакторе будет больше, чем испускает источник. Это связанно с тем, что нейтроны источника вызывают деление ядерного горючего (235U, 239Pu). Выразим это аналитически.

Число нейтронов в точечном реакторе можно определить, исходя из системы уравнений т.н. точечной кинетики /1/:

(1.1а)

(1.1в)

где

N –среднее число нейтронов в реакторе;

Keff - эффективный коэффициент размножения;

l- среднее время жизни нейтронов в реакторе;

Ci- концентрация эмиттеров запаздывающих нейтронов i-й группы;

li- постоянная распада эмиттеров запаздывающих нейтронов i-й группы;

beff,i- доля запаздывающих нейтронов i-й группы.

 

Однако, система уравнений в таком виде удобна только для описания стационарных подкритических состояний реактора, условно ее можно назвать системой уравнений в "форме Кeff". Для описания всех критических и надкритических состояний гораздо большее распространение получила эквивалентная система уравнений, которую мы бы условно назвали системой в "форме r", которая описывает процессы через переменную реактивности r=(Кeff -1)/ Кeff. Эту систему можно записать в виде, который действительно практически универсален:

 

 

(1.2а)

 

(1.2в)

где

N -среднее число нейтронов в реакторе;

L- среднее время генерации нейтронов;

В стационарных состояниях (когда производные равны нулю) системы уравнений (1.1) (1.2) приводятся к следующим простым соотношениям:

 

. (1.3)

То же самое можно выразить через реактивность:

N=-QL/r или r=- QL/ N. (1.4)

 

Таким образом, существует только два способа реализовать стационарные состояния в реакторе.

· При Keff =1 (r=0) только в том случае,если в реакторе нет посторонних источников (Q=0).

· При Keff < 1 (r < 0) только в присутствии источника нейтронов Q¹0.

В подкритическом реакторе уровень нейтронной мощности оказывается связан с величиной критичности К или реактивности r через мощность источника, тогда

или (1.5)

 

Здесь вводят понятие коэффициента умножения Yi или просто умножения нейтронов для состояния реактора «i» как отношение числа нейтронов в реакторе в состоянии «i» -Ni к числу нейтронов без размножения N0 (или с минимальным стартовым размножением) Yi= Ni/ N0. Реально мы, конечно, не знаем истинного числа нейтронов в реакторе, а только оцениваем его по скорости отсчетов детектора или току ионизационных камер Ii, которые связаны с числом нейтронов через эффективность этих детекторов (e) как Ii = e* Ni. Тогда можно условно принять:

 

Yi= Ii /I0. (1.6)

Примечание. Отметим, что в этом соотношении не все так уж просто. В числителе мы используем эффективность детектора по отношению к размножающимся вторичным нейтронам деления (спектр деления с энергией примерно 2МэВ), а в знаменателе- по отношению к нейтронам источника (спектр испарительный с энергией около 1 МэВ).

Из сравнения (1.3) и (1.6) видно, что при таком определении

, (1.7)

где С(К)-функция, в которой учитывается пространственное распределение нейтронов и эффективность детектора. Практически все факторы, влияющие на величину C(Keff), поддаются расчёту (хотя зачастую сложному). Однако в этом нет необходимости, так как фундаментальный факт состоит в том, что при приближении к критичности C(Keff) стремится к 1:

 

= при Keff Þ l. (1.8)

 

Метод обратного умножения

 

После определения понятия умножения вводят понятие «обратного умножения» ОУ=1/У и на основе этого соотношения записывают формулу обратного умножения

 

. (1.9а)

 

Именно на этом соотношении построен «метод обратного умножения», позволяющий экспериментально измерять как реактивность (или критичность) самого реактора, так и реактивность вносимых в него возмущений.

На методе обратного умножения (ОУ) основано измерение любых изменений реактивности реактора. Фундаментальный вывод состоит в том, что изменение реактивности при переходе реактора из состояния"1" состояние "2", равно:

 

Dr21=r2 -r1 =1/У1 – 1/У2=ОУ1-ОУ2= -DОУ (1.9в)

 

На этом методе основано, в частности, «взвешивание » (определение полной эффективности) стержней СУЗ в подкритических состояниях, то есть определение изменения реактивности реактора при перемещении стержня от нижнего до верхнего положения (или наоборот). Этим же методом получают интегральную и дифференциальную градуировочную характеристику органа регулирования, измеряя вес частей стержня /2/. Принципиально, что измерение этих кривых по методу обратного умножения возможно именно в достаточно «глубоких», т.е. безопасных подкритических состояниях. Тогда можно сразу измерять интегральную кривую, а дифференциальную затем получать простым дифференцированием.

Наоборот, в критических состояниях реактора любые измерения характеристик стержней возможны только методом «компенсации» измеряемой реактивности другой, известной реактивностью(например, борной кислотой в реакторе ВВЭР и т.п.). Тогда прямо будет измеряться дифференциальная кривая (участки стержня), а интегральная будет воспроизведена интегрированием.

Заметим, что метод ОУ даёт относительный «вес». В данном случае, так же как и в процессе загрузки топлива (ТВС), «вес» стержня выражен в единицах ОУ. Перевести его в абсолютные единицы (т.е. произвести абсолютную калибровку) можно, измерив одну и ту же долю любой порции реактивности (веса стержня) по любому методу абсолютного измерения реактивности и по ОУ. Для этого, в частности, подойдут метод асимптотического периода (что дает связь реактивности в бета с периодом Тасс в сек:

 

r/b=1/(1+lТасс) (1.10)

 

либо метод "сброса стержня".

Все работы по измерению эффективности стержней проводятся при приближении к критическому состоянию (K eff = 0.95-0.98 и Y=20-30), когда можно считать, что свойства подкритического и критического реакторов близки (это не факт, а допущение).

На методе обратного умножения основан и метод безопасного достижения критического состояния при загрузке реактора.

Отметим особо, что метод обратного умножения - статический. Поэтому при замерах скорости счёта детекторов следует делать выдержку после любых возмущений (1-3 минуты), чтобы исключить переходные процессы.

 

Метод пуска реактора

 

Методика пуска обеспечивает ядерную безопасность в процессе пуска (во времена Ферми подразумевались даже частичные отказы контрольных приборов) и сводится к построению в процессе загрузки реактора зависимости обратного умножения (ОУ=1/У) от характеристики реактора, изменяющей параметр его критичности (например, в нашем случае -от числа загруженных в реактор тепловыделяющих сборок ТВС (n), в других ситуациях -от уровня замедлителя Н, концентрации борной кислоты С, положения компенсирующих органов и т.п.).

(1.11)

 

На практике чуть удобнее оперировать величиной в 1000 раз большей –так называемой ТОУ (тысяча обратного умножения):

 

ТОУ = 1000* .

 

В общих чертах процедура такова. Устанавливается «нулевое» или «реперное» состояние реактора, в нем фиксируются все параметры (температура, расход, положение всех органов управления). В нем измеряется ток ионизационной камеры (ИК)-это I0, соответственно У0=1 и ОУ0=1. Значения ОУ0 =1 или 1000ТОУ откладывают на графике зависимости ОУ от числа загруженных ТВС -n ТВС (см. рис.1). Затем загружается безопасное колическтво-порция ТВС (n ТВС) и замеряется ток ИК- это In или Ii. Вычисляется У и ОУn. Значения ОУn откладывают на графике зависимости ОУ от числа n ТВС (см. рис.1). Через эти две точки проводят прямую и экстраполируют ее до пересечения с осью n ТВС. Это и есть первое экстраполированное значение критического состояния n1 экст. Все данные (причем детально) по состоянию реактора и положению стержней, температур, тока ИК, времени и т.п. заносят в журнал (см. приложение). Реальная форма кривой обратного умножения зависит от многих факторов. В принципе, она может иметь как вогнутый, так и выпуклый характер. Последнее, правда, крайне нежелательно, вернее, запрещено, так как экстраполяция занижает критическое состояние, что весьма опасно. Детальное описание всей процедуры и требований безопасности будет дано в описании выполнения работы (п. 3).

Теперь перейдем к описанию самого тренажера.


Рис.1. Кривая обратного умножения

 


Описание тренажера

 

Тренажер представляет собой модель быстрого реактора (БН-350) с урановым оксидным топливом и жидким натрием в качестве теплоносителя. Высота активной зоны 1.6м, но для простоты работы мы можем принять ее равной 1м. Сначала коротко остановимся на возможностях тренажера.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: