Нормальный закон распределения.




Закон распределения Пуассона.

Если число испытаний велико, а вероятность р появления события в каждом испытании очень мала, то используют приближенную формулу: Pn (k)=лямда в степ k * eв степ -лямда/k!, где к – число появлений события в n независимых испытаниях, лямда=np (среднее число появлений события в n испытаниях), и говорят, что С.В. распределена по закону Пуассона.

Геометрический закон распределения Д.С.В.

С.В. Х имеет геометрическое распределение, если Pm=P{X=m}=q*m p, m=0,1,2,…, 0<p<1, q=1-p. Просуммировав бесконечно убывающую геометрическую прогрессию, легко убедиться в том, что сумма по m от 0 до бесконечности Pm=1: сумма по m от 0 до бесконечности Pm=сумма по m от 0 до бесконечности pq*m=p*1/1-q=1. Геометрическое распределение имеет С.В. Х, равная числу испытаний Бернулли до первого успеха с вероятностью успеха в единичном испытании р.

Определение непрерывной С.В. Плотность распределения и ее свойства.

С.В. Х называется непрерывной, если существует неотрицательная функция рх(х) такая, что при любых х функцию распределения Fx(x) можно представить в виде: Fx(x)=интеграл от –бесконечности до х px(y)dy. Рассматривают только такие С.В., для которых рх(х) непрерывна всюду, кроме, может быть, конечного числа точек. Плотностью распределения вероятностей непрерывной С.В. называют первую производную от функции распределения: f(x)=F’(x). Вероятность того, что Н.С.В. Х примет значение, принадлежащее интервалу (а,b), определяется равенством P(a<X<b)=интервал от а до b f(x)dx. Зная плотность распределения можно найти функцию распределения F(x)=интеграл от –бесконечности до х f(x)dx. Плотность распределения обладает следующими свойствами: 1) П.Р. неотрицательна, т.е. f(x)>=0. 2) Несобственный интеграл от плотности распределения в пределах от –бесконечности до бесконечности равен единице: интеграл от –бесконечности до бесконечности f(x)dx=1.

Математическое ожидание Н.С.В. и его свойства.

Мат. ожидание Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: М(Х)=интеграл от –бесконечности до бесконечности хf(x)dx, где f(x) - плотность распределения С.В. Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу (а,b), то М(Х)=интеграл от а до b xf(x)dx. Все свойства мат. ожидания, указаны выше, для Д.С.В. Они сохраняются и для Н.С.В.

Математическое ожидание непрерывной случайной величины называется число

М(Х) = ∫хf(x)dx.

Две случайные величины (произвольные, непрерывные или дискретные) Х и Y называются независимыми, если для всех х,y? R

P[(X<x) ∩ (Y<y)] = P (X<x) P(Y<y),

Т.е. если для всех х,y? R события (Х<x) и (Y<y) независимы.

Свойства:

2. М(С) = С, С =const

3. М(СХ) = С*М(Х), С = const

4. М(Х+Y) = М(Х) + М(Y), Х и Y – дискретные случайные величины.

Дисперсия непрерывной случайной величины и их свойства.

Дисперсия Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: D(X)=интеграл от –бесконечности до бесконечности [x-M(X)]*2f(x)dx, или равносильным равенством: D(X)=интеграл от –бесконечности до бесконечности x*2f(x)dx – [M(X)]*2. В частности, если все возможные значения х принадлежат интервалу (a,b),то D(X)=интервал от а до b [x – M(X)]*2f(x)dx,или D(X)=интеграл от a до b x*2f(x)dx – [M(X)]*2. Все свойства дисперсии Д.С.В. сохраняются и для Н.С.В.

Дисперсия случайной величины:

D(X)=∫(x-M(x)2f(x)dx, D(x)=∫x2f(x)dx-(M(x))2

Свойства:

1. D(C) = 0

2. D(CX) = C2D(X)

3. D(X+Y) = D(X) + D(Y), X и Y – независимые дискретные случайные величины.

Равномерный закон распределения.

Равномерным называют распределение вероятностей Н.С.В. Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность сохраняет постоянное значение, а именно f(x)=1/(b-a); вне этого интервала f(x)=0. Нетрудно убедиться, что интеграл от –бесконечности до бесконечности р(х)dx=1. Для С.В., имеющей равномерное распределение, вероятность того, что С.В. примет значения из заданного интервала (х,х+дельта) прин. [a,b], не зависит от положения этого интервала на числовой оси и пропорциональна длине этого интервала дельта: P{x<X<x+дельта}=интеграл от х до х+дельта 1/b-adt=дельта/b-a. Функция распределения Х имеет вид: F(x)=0, при х<=a, x-a/b-a,при a<x<=b,1при х>b.

Показательный закон распределения.

Н.С.В. Х, принимающая неотрицательные значения, имеет показательное распределение с параметром лямда, если плотность распределения С.В. при x>=0 равна р(х)=лямда*е в степени - лямда*х и при x<0 р(х)=0. Функция распределения С.В. Х равна F(x)=интеграл от –бесконечности до х р(t)dt=0, при x<=0,1-е в степени –лямда*х при x>0.

Нормальный закон распределения.

Н.С.В. Х имеет нормальное распределение вероятностей с параметром а и сигма>0, если ее плотность распределения имеет вид: р(х)=1/(корень квадратный из 2пи *сигма) * е в степени –1/2*(x-a/сигма)*2. Если Х имеет нормальное распределение, то будем кратко записывать это в виде Х прибл. N(a,сигма). Так как фи(х)=1/(корень из 2пи)*е в степени –х*2/2 – плотность нормального закона распределения с параметрами а=0 и сигма=1, то функция Ф(х)=1/(корень из 2пи)* интеграл от –бесконечности до х е в степени –t*2/2dt, с помощью которой вычисляется вероятность P{a<=мюn-np/(корень из npq)<=b}, является функцией распределения нормального распределения с параметрами а=0, сигма=1.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: