Топливные системы с насос-форсунками




Системы дизельной топливной аппаратуры насос-форсунка начали применяться на грузовых автомобилях с 1994 года и легковых с 1998 года. Модульная конструкция систем питания дизельных двигателей с насос-форсунками позволяет устанавливать без особых затрат времени на двигатели различных конструкций.

Недостатком насос-форсунок является увеличение высоты головки блока цилиндров, что в свою очередь вызывает увеличение высоты двигателя.

Насос-форсунки состоят из трех подсистем: подачи топлива низкого давления, подачи топливавысокого давления, подачи воздуха и выпуска отработавших газов.

Подсистема подачи топлива низкого давления необходима для подачи топлива к насосу высокого давления и очистки топлива.

Подсистема подачи топлива высокого давления служит для создания высокого давления впрыска топлива в камеру сгорания.

Подсистема подачи воздуха и выпуска отработавших газов включает в себя приборы для очистки воздуха, поступающего в цилиндры двигателя и очистки отработавших газов после выпуска их из цилиндров.

Основные компоненты системы питания дизельного двигателя с насос-форсунками показаны на рис.5.79.

Рис. 5.79. Система питания дизельного двигателя с насос-форсунками:

1 – топливный бак; 2 – топливопровод к дополнительному отопителю; 3 – охладитель топлива; 4 – датчик температуры топлива; 5 – ограничительный клапан в сливном трубопроводе; 6 – сливной трубопровод; 7 – распределитель топлива; 8 – трубопровод высокого давления; 9 – насос-форсунка; 10 – топливоподкачивающий насос; 11 – редукционный клапан в трубопроводе подачи топлива; 12 – обратный клапан; 13 – топливный фильтр; 14 – трубопровод низкого давления; 15 – топливоподкачивающий насос

 

Расположенный в баке электрический топливоподкачивающий насос 15 подкачивает топливо к фильтру. Обратный клапан 12 предотвращает слив топлива из распределителя 7 и трубопровода низкого давления 14 в бак после остановки двигателя.

Топливоподающий насос 10 служит для забора топлива из фильтра и подачи его под повышенным давлением к насос-форсункам. Редукционный клапан 11 поддерживает давление подаваемого к насос-форсункам топлива в пределах 8,5 кгс/см2. Ограничительный клапан 5 удерживает давление топлива в сливном трубопроводе на уровне 1 кгс/см2, благодаря ему снижаются пульсации давления в системе.

Из-за высокого давления впрыска в топ­ливных системах дизелей легковых автомо­билей с насос-форсунками и в некоторых системах коммон рейл, топливо нагревает­ся до такой степени, что для предотвраще­ния повреждения топливного бака и датчи­ка уровня топлива оно должно охлаждаться перед возвратом в бак. Топливо, возвраща­ющееся от форсунок, проходит через охла­дитель 3, отда­вая тепло в контуре охлаждения. Датчик температуры топлива 4 вырабатывает сигнал, поступающий в блок управления двигателем.

От фильтра топливо подается в питающую магистраль в головке блока. В питающей магистрали топливо течет по внутренним стенкам распределителя топлива 7 в направлении первого цилиндра. Через отверстия в стенках топливо подается в кольцевую полость между распределителем и стенками головки блока (рис. 5.80.).

Рис. 5.80. Смешивание топлива в распределителе

Здесь топливо смешивается с нагретым топливом, которое выдавлено от насос-форсунок в питающую магистраль. Благодаря этому достигается одинаковая температура, а значит и одинаковое количество топлива поступающего ко всем насос-форсункам, что обеспечивает равномерную работу двигателя. Без распределителя топливо поступало бы в насос-форсунки неравномерно. Нагретое топливо, выжимаемое от насос-форсунок в питающую магистраль, продвигалось бы поступающим топливом от четвертого цилиндра в направление первого цилиндра. Из-за этого температура топлива повышалась бы от четвертого цилиндра к первому, и к насос-форсункам поступало бы различное количество топлива. Следствием этого была бы неравномерная работа двигателя и слишком высокая температура в зоне передних цилиндров.

Насос-форсунки могут иметь электрический (соленоидный) или пьезоэлектрический клапан управление.

Насос-форсунка с электрическим клапаном управления представляет собой одноцилиндровый насос высокого давления индивидуальный для каждого цилиндра двигателя (рис. 5.81.).

 

Рис. 5.81. Насос-форсунка (РDЕ):

1 – упор сферический; 2 – пружина возвратная; 3 – плунжер насоса; 4 – корпус; 5 – штекер для подачи управляющего сигнала; 6 – сердечник электромагнита; 7 – пружина выравнивающая; 8 – игла соленоидного клапана; 9 – якорь электромагнита; 10 – катушка электромагнита; 11 – канал обратного слива топлива; 12 – уплотнение; 13 – отверстия-фильтры подвода топлива (350 шт.); 14 – гидроупор; 15 – седло иглы; 16 – шайба уплотнительная; 17 – камера сгорания; 18 – игла распылителя; 19 – гайка распылителя; 20 – распылитель; 21 – головка блока; 22 – пружина распылителя; 23 – уравнивающий поршень; 24 – полость аккумулирования топлива; 25 – полость высокого давления; 26 – пружина электромагнитного клапана; 27 – вал привода насос-форсунки; 28 – коромысло

 

Внутри корпус насос-форсунки имеется цилиндрическая полость высокого давления. Соленоидный клапан монтируется как одно целое с насос-форсункой. Крепление насос-форсунки к головке блока осуществляется с помощью прижимной скобы. В приводе насос-форсунки, в отличие от привода механизма газораспределения отсутствуют тепловые зазоры, так как здесь с помощью возвратной пружины осуществляется постоянный контакт между толкателем плунжера, коромыслом и кулачком приводного вала.

Быстродействующий соленоидный клапан в соответствии с параметрами, определяемыми блоком управления, обеспечивает регулировку времени начала впрыска топлива и его конец. В отключенном положении соленоидный клапан открыт и обеспечивает полное прохождение топлива от топливоподкачивающего насоса к подплунжерному пространству насоса. Во время хода плунжера 3насос-форсунки соленоидный клапан перекрывает подачу топлива, герметизируя плунжерную пару и при ходе плунжера вниз происходит впрыск топлива через форсунку в камеру сгорания. Момент закрытия соленоидного клапана регулирует начало впрыска и его продолжительность. По сравнению с впрыском бензиновых двигателей электромагнитный клапан должен управлять давлением в 300…500 раз большим, при этом переключение клапана происходит в 10…20 раз быстрее.

Использование насос-форсунки исключает применение топливопроводов высокого давления, благодаря чему снижаются потери давления при подаче топлива из-за периодических расширений топливопроводов в начале подачи и разгрузке в конце подачи. Максимальное давление развиваемое насос-форсунками составляет 2050 кгс/см2. Электронные трехмерные параметрические характеристики в комбинации с высоким давлением впрыска приводят к снижению потребления топлива при одновременном снижении выброса токсичных веществ, что имеет большое значение принимая во внимание строгие требования соблюдения европейских стандартов. Используя управление соленоидным клапаном, имеется возможность реализовать предварительный (пилотный) впрыск и отключение отдельных цилиндров из работы при частичных нагрузках, что уменьшает расход топлива.

Соленоидный клапан. Основными задачами соленоидного клапана являются: обеспечение точного времени начала впрыска топлива относительно угла поворота коленчатого вала двигателя на различных режимах работы, продолжительности впрыска и количества топлива, впрыскиваемого в цилиндр двигателя.

Соленоидный клапан можно разделить на две группы – соленоидную и клапанную. Клапанная группа состоит из игольчатого клапана 2 (рис. 5.82), корпуса 12 клапана составляющего одно целое с корпусом насоса и пружины клапана 1.

 

Рис. 5.82. Соленоидный клапан для легковых автомобилей:

1 – пружина клапана; 2 – игольчатый клапан; 3 – камера высокого давления; 4 – камера низкого давления; 5 – компенсационная шайба; 6 – катушка; 7 – упор; 8 – штекер; 9 – щель для прохода топлива; 10 – уплотнительная плоскость корпуса клапана; 11 – уплотнительная плоскость клапана; 12 – корпус; 13 – накидная гайка; 14 – магнитный диск; 15 – магнитный сердечник; 16 – якорь; 17 – уравнительная пружина

 

Уплотнительная плоскость 10 корпуса клапана имеет конусообразную форму. Посадочная поверхность клапана 11 имеет точно такую форму, однако угол конуса клапана немного больше угла конуса его корпуса. Когда клапан закрыт и прижат к корпусу, корпус и клапан соприкасаются только по линии седла клапана, благодаря чему достигается очень хорошее уплотнение клапана. Клапан и его корпус составляют прецизионную пару и очень плотно подогнаны друг к другу.

Магнит состоит из ярма магнитопровода и подвижного якоря 16. Ярмо состоит из магнитного сердечника 15, катушки 6 и штекеров выводных контактов 8. Якорь соединен с клапаном. Между магнитным ярмом и якорем в исходном положении имеется зазор.

Принцип действия соленоидного клапана. Электромагнитный клапан имеет два пе­реключаемых положения – "клапан открыт" и "клапан закрыт". Клапан открыт, когда нап­ряжение питания на катушку не подается. Клапан закрывается при подаче напряжения питания от задающего каскада ЭБУ.

Клапан открыт. Под усилием пружины 1 клапан 2 прижимается к упору 7, в результате чего обеспечивается проход топлива через щель для прохода топлива 9 между иглой и корпусом в области седла клапана. При этом камеры высокого 3 и низкого 4 давления соеди­нены между собой. В этом исходном поло­жении топливо может как втекать в камеру высокого давления, так и вытекать из нее.

Клапан закрыт. Когда наступает момент впрыска топли­ва, на катушку клапана подается напряже­ние питания от задающего каскада ЭБУ. Ток срабатывания вызы­вает магнитный поток в элементах магнит­ного контура (магнитный сердечник и якорь), который генерирует силу магнитно­го притяжения для перемещения якоря к статору. В результате движение якоря оста­навливается иглой при ее посадке на седло в корпусе. При этом между якорем и стато­ром остается небольшой воздушный зазор. Клапан теперь закрыт, и при движении плунжера насос-форсунки вниз осущес­твляется впрыск топлива.

Сила магнитного притяжения использует­ся не только для подтягивания якоря, но и для преодоления силы действия пружины клапа­на и, соответственно, удерживания якоря. Кроме того, сила магнитного притяжения прикладывается к уплотнительным поверх­ностям седла для удерживания их в контакте друг с другом. Якорь удерживается в данном положении до тех пор, пока на катушку клапа­на подается напряжение питания.

Чем сильнее магнитный поток, тем ближе располагается к статору якорь. После зак­рытия клапана можно уменьшить ток до удерживающего уровня. Клапан, таким об­разом, остается закрытым, а потери мощ­ности и, следовательно, выделение тепла, оказываются минимальными.

Для прекращения процесса впрыска топ­лива должна быть прекращена подача напря­жения на катушку клапана, в результате чего магнитный поток исчезает, как и сила магнитного притяжения, и пружина перемещает иглу клапана в ее ис­ходное положение на упоре. Проход топлива через седло клапана открывается.

Принцип действия насос-форсунки. Работу насос форсунки можно разделить на 4 хода плунжера: ход впуска, предварительный ход, ход нагнетания и впрыска топлива, окончание процесса впрыска (рис. 5.83).

 

 

Рис. 5.83. Принцип действия насос-форсунки:

а – ход наполнения; b – предварительный ход; c – ход нагнетания и процесс впрыска топлива; d – окончание процесса впрыска; 1 – кулачок приводного вала; 2 – плунжер; 3 – возвратная пружина; 4 – полость высокого давления; 5 – клапан соленоида; 6 – полость соленоидного клапана; 7 – впускной канал; 8 – выпускной канал; 9 – обмотка соленоида; 10 – седло клапана; 11 – игла форсунки; Is – сила тока в – ток в обмотке электромагнита; hм – ход электромагнитного клапана; pe – давление впрыска; hN – ход иглы форсунки

 

Ход наполнения. При движения плунжера вверх, под воздействием возвратной пружины, топливо при постоянном давлении поступает по каналу 7 от подкачивающего насоса в полость соленоидного клапана 6, который открыт, так как на него не подается напряжение (рис. 5.83, а). По каналам топливо попадает в полость высокого давления 4.

Предварительный ход. Кулачок приводного вала поворачиваясь (рис. 5.83, b), начинает оказывать давление на плунжер 2, который движется вниз. Соленоидный клапан открыт и топливо, под давлением движущегося вниз плунжера 2, вытесняется через выпускной канал 8 в систему низкого давления.

Ход нагнетания и процесс впрыска топлива (рис. 5.83, c). От блока управления на катушку 9 соленоидного клапана подается напряжение и якорь соленоидного клапана под воздействием созданного электромагнитного поля закрывает клапан, преодолевая при этом сопротивление пружины клапана. Сила магнитного потока при этом должна быть достаточно большой, чтобы обеспечить достаточное уплотнение между плоскостями 10 и 11. Чем ближе якорь расположен к ярму, тем больше сила прижатия клапана к седлу, что позволяет снизить ток управления соленоидным клапаном, уменьшая расход электроэнергии, и сохранить при этом закрытое положение клапана. Сообщение между полостями высокого и низкого давления при этом перекрывается. Закрытие соленоидного клапана приводит к изменению тока катушки 9, что определяется блоком управления, как начало подачи топлива.

Давление топлива в полости высокого давления при движении плунжера возрастает. Одновременно возрастает давление и в полости распылителя форсунки. При достижении давления начала подъема иглы распылителя около 300 кгс/см2 игла распылителя слегка приподнимается и начинается впрыск топлива в камеру сгорания (фактическое начало впрыска или начало подачи). Давление впрыска постоянно увеличивается по мере хода плунжера насоса.

Окончание процесса впрыска (рис. 5.83, d). При прекращении подачи тока на обмотку соленоида клапан приоткрывается и сообщение между полостями высокого и низкого давления снова восстанавливается. В момент переходной фазы между ходом нагнетания и окончанием процесса впрыска достигается наибольшее давление нагнетания. В зависимости от типа насоса форсунки оно составляет 1800…2050 кгс/см2. После полного открытия электромагнитного клапана давление резко падает, игла форсунки при этом закрывает отверстие распылителя, усилием пружины клапан устанавливается в исходное положение и процесс впрыска заканчивается.

Предварительный впрыск. Как отмечалось ранее для снижения шума и выброса токсичных веществ в форсунках, в том числе и насос-форсунках, может применяться предварительный впрыск. Такой впрыск можно подразделить на 4 фазы: исходное состояние, начало предварительного впрыска, конец предварительного впрыска и начало основного впрыска (рис. 5.84).

Исходное состояние рис. 5.84, а. Иглафорсунки 7 и разгрузочный поршень3 прижаты к своим седлам, соленоидный клапан открыт, поэтому давление под плунжером отсутствует.

Начало предварительного впрыска рис. 5.84, b. Соленоидный клапан закрывается, плунжер начинает двигаться вниз, поэтому давление под плунжером возрастает. При достижении давления открытия, игла форсунки приподнимается и начинается впрыск. В этой фазе ход иглы форсунки зависит только от давления под плунжером.

Конец предварительного впрыска рис. 5.84, с. При дальнейшем движении плунжера вниз давление под плунжером возрастает в большей степени и разгрузочный поршень 3, преодолевая сопротивление пружины, отходит от своего седла. При этом открывается проход топлива от полости высокого давления 2 в разгрузочную полость 4. В этот момент давление под иглой форсунки падает и игла закрывается, впрыск при этом прекращается. Во время предварительного впрыска через форсунку подается около 1,5 мм3 дизельного топлива, что разогревает камеру сгорания и позволяет топливу воспламеняться быстрее.

 

Рис. 5.84. Предварительный впрыск:

а – исходное состояние; b – начало предварительного впрыска; c – коней предварительного впрыска; d – основной впрыск; 1 – плунжер; 2 – полость высокого давления; 3 – разгрузочный поршень; 4 – разгрузочная полость; 5 – пружина; 6 – корпус пружины; 7 – игла форсунки

Основной впрыск рис.5.84, d. При дальнейшем движении плунжера вниз давление под ним продолжает возрастать. С достижением давления до 2050 кгс/см2 форсунка снова открывается и начинается основной впрыск.

В момент открытия соленоидного клапана впрыск прекращается и разгрузочный поршень и игла форсунки занимают исходное положение.

Насос-форсунка с пьзоэлектрическим клапаном управления отличается от насос-форсунки с соленоидным клапаном приводом клапана управлением моментами начала и окончания подачи топлива. В таких форсунках устанавливается пьезоэлектрический клапан, который обладает значительно большим быстродействием, чем соленоидный клапан (рис. 5.85). Принцип действия пьезопривода основан на обратном пьезоэлектрическом эффекте. Этот эффект заключается в увеличении размеров пьезоэлемента при приложении к нему напряжения.

Рис. 5.85. Принцип действия пьезоэлемента:

1 – металлические обкладки для подвода напряжения; 2 – упрощенная структура кристалла; а – состояние кристалла пьезоэлемента при отсутствии напряжения; б – состояние кристалла пьезоэлемента при подаче напряжения

 

Приращение длины пьезоэлемента прямо пропорционально прилагаемому напряжению. Таким образом можно управлять приращением длины пьезоэлемента, изменяя напряжение на его обкладках.

 

Пьезоэлектрический клапан состоит из пьезопривода в корпусе с штекерным разъемом, рычажного мультипликатора 4 и иглы клапана 13, перемещающейся в корпусе насос-форсунки (рис. 5.86).

 

Рис. 5.86. Схема и принцип работы пьезоэлектрической насос-форсунки в режиме впрыска запальной дозы топлива:

1 – кулачок привода насос-форсунки; 2 – роликовое коромысло; 3 – пружина плунжера; 4 ­- рычажный мультипликатор; 5 – пьезоэлектрический клапан; 6 – полость высокого давления; 7 - магистраль слива топлива; 8 – магистраль подвода топлива; 9 – игла распылителя; 10 – запорный поршень; 11 – пружина форсунки; 12 – обратный клапан; 13 – игла клапана; 14 – плунжер; 15 – демпфирующий объем над иглой; 16 – дроссель в канале подвода топлива; а – процесс наполнения полости под плунжером; б – начало впрыска запальной дозы топлива; в – завершение впрыска запальной дозы топлива

 

Ход пьезопривода равен приблизительно 0,04 мм. Однако полный ход иглы 13 клапана должен быть порядка 0,1 мм. Чтобы решить эту задачу, между пьезоприводом и иглой клапана устанавливают рычажный мультипликатор 4 с соответствующим передаточным отношением.

При отсутствии управляющего напряжения пьезопривод находится в исходном положении. При этом клапан открыт, так как его игла поднимается с седла под действием возвратной пружины. При подаче напряжения нажимная пластина приводит в действе мультипликатор, который обеспечивает перемещение иглы клапана практически на 0,1 мм. При этом клапан закрывается, а в полости под плунжером начинает подниматься давление.

Принцип действия насос-форсункис с пьезоэлектрическим клапаном управления. Впрыск запальной дозы топлива.

Процесс наполнения полости под плунжером (рис. 5.86, а). Подъем плунжера происходит под действием его пружины вслед за поворотом кулачка и роликового коромысла насос-форсунки. Кулачку придана несимметричная форма, которая обеспечивает перемещение плунжера вверх с пониженной скоростью. При этом полость под плунжером заполняется топливом, поступающим через открытый пьезоэлектрический клапан из магистрали его подвода 8 к насос-форсунке.

Начало впрыска запальной дозы топлива (рис. 5.86, б). При набегании кулачка на ролик коромысло поворачивается и перемещает плунжер с относительно большой скоростью вниз. Вытесняемое плунжером топливо перетекает в каналы низкого давления до тех пор, пока не закроется пьезоэлектрический клапан. После закрытия этого клапана давление топлива в полости под плунжером начинает быстро расти. При его повышении до 130 кгс­­/см2 преодолевается усилие затяжки пружины 11 форсунки. В результате этого игла распылителя поднимается и начинается впрыск запальной дозы топлива. При этом движение иглы распылителя демпфируется топливом, вытесняемым из объема 15 между ее торцем и корпусом форсунки. Ограничение подъема иглы необходимо для повышения точности подачи малых доз топлива, характерных для предварительного впрыска.

Завершение впрыска запальной дозы топлива (рис. 5.86, в). Впрыск запальной дозы топлива заканчивается врезультате открытия пьезоэлектрического клапана.Давление вытесняемого плунжером топлива снижается в результате слива его в магистраль 8, служащуюдля его подвода к насос-форсунке. Игла распылителя опускается на седло под действием пружиныфорсунки и поддерживающего ее давления топлива, которое поступает в полость пружины форсункичерез обратный клапан 12. Это давление создаетсядросселем 16, установленным во внутреннем каналеподвода топлива.Действующее в полости пружины давление топливапередается посредством запорного поршня 10 на иглураспылителя и ускоряет ее посадку.

В зависимости от режима работы двигателя блок управления может инициировать впрыск одной или двух запальных доз топлива.

Впрыск основной дозы топлива. Начало впрыска основной дозы (рис. 5.87, а). Впрыск основной дозы топлива производится при продолжающемся движении плунжера вниз. После посадки на седло иглы пьезоэлектрического клапана начинается повышение давления в распылителе, игла которого поднимается с седла только при относительно большом давлении, соответствующем суммарному усилию затяжки пружины форсунки и усилию, создаваемому давлением топлива в полости пружины. Повышенное давление топлива в полости пружины форсунки создается после впрыска запальной дозы топлива и удерживается в ней благодаря обратному клапану 12. Это давление действует на запорный поршень 10 форсунки. Максимальное давление впрыска достигает на режиме максимальной мощности 2200 кгс/ см2.

Завершение впрыска основной дозы топлива (рис. 5.87, б). Впрыск основной дозы топлива заканчивается вследствие открытия пьезоэлектрического клапана. Как и при окончании впрыска запальной дозы, давление топлива снижается в результате его слива в топливоподводящий канал и в полость пружины форсунки. Посадка иглы распылителя на седло производится под суммарным действием пружины и запорного поршня.

Для регенерации сажевого фильтра может применяться дополнительный впрыск. Процесс впрыска дополнительного топлива практически не отличается от процесса впрыска основного топлива, но характеризуется существенно меньшими давлением и количеством впрыскиваемого топлива ввиду меньшей продолжительности его подачи.

 

Рис. 5.87. Схема и принцип работы пьезоэлектрической насос-форсунки в режиме впрыска основной дозы топлива:

Позиции на рисунке соответствуют рис. 5.86; 17 – охлаждающий канал

а – начало впрыска; б – завершение впрыска

Топливоподкачивающий насос. Топливоподкачивающий насосы могут быть как внутренним зацеплением шестерен (рис. 5.88), так и шиберные.

Давление подаваемого насосом топлива регулируется редукционным клапаном 5.

Рис. 5.88. Топливоподкачивающий насос с внутренним зацеплением шестерен:

1 – подача топлива к насос-форсункам; 2 – возврат топлива от насос-форсунок; 3 – редукционный клапан на стороне возврата топлива; 4 – сетчатый фильтр; 5 – редукционный клапан на стороне подачи топлива; 6 – подача топлива из бака

 

При частоте вращения коленчатого вала 4000 об/мин давление топлива может повышаться до 11,5 кгс/см2. Установленный в системе возврата топлива редукционный клапан 3 поддерживает в ней давление порядка 1 кгс/см2. Благодаря этому снижаются пульсации потока топлива, действующего на электромагнитные клапаны насос-форсунок.

Топливоподкачивающий насос шиберного типа конструктивно выполнен как роторный насос (рис. 5.89).

В этой конструкции подкачивающего насо­са, применяемого в дизелях легко­вых автомобилей с насос-форсунками, две отдельно расположенные лопатки прижима­ются пружинами 3 к ротору 1. Топливный насос шиберного типа работает по принципу всасывания при увеличении объема камер и подачи при уменьшении объема их. Топливо засасывается и подается попеременно двумя камерами из четырех. Всасывающие и напорные камеры отделены шиберными заслонками.

При враще­нии ротора объем на стороне всасывающей полости 2 увеличивается, и топливо попа­дает в две камеры. Далее, при вращении ро­тора, объем камеры уменьшается, и топливо выталкивается из камер в выходной канал давления 5. Такой насос подает топливо да­же при очень низкой частоте вращения.

Рис. 5.89. Схема лопастного насоса с отдельно расположенными лопатками:

1 – ротор, 2 – сторона всасывания, 3 – пружины, 4 – отдельные лопатки, 5 – сторона нагнетания.

 

Как правило, топливоподкачивающий насос располагается непосредственно за вакуумным насосом на головке блока цилиндров. Оба насоса имеют общий привод от распределительного вала и поэтому составляют единый тандемный насос.

Особенности ременного привода ГРМ. В дизельных двигателях, оборудованных насос-форсунками, зубчатый ремень при впрыске топлива имеет значительные нагрузки. Зубчатое колесо при нажатии коромысла на плунжер насос-форсунки замедляется, зубчатое колесо коленчатого вала одновременно ускоряется при сгорании топлива. Вследствие этого ремень растягивается, и расстояние между зубьями ремня существенно увеличивается. Вследствие существующего порядка работы двигателя этот процесс периодически повторяется, потому что одни и те же зубья зубчатого колеса входят в зацепление с зубчатым ремнем.

При наличии зубчатого колеса коленчатого вала с одинаковыми расстояниями между зубьями зубья ремня наталкиваются на края зубьев зубчатого колеса при увеличенной нагрузке на ремень при впрыске топлива. Следствием этого являются большой износ и небольшой срок службы зубчатого ремня. Чтобы устранить последствия этого явления на ремне и разгрузить ремень при впрыске топлива, на зубчатом колесе коленчатого вала имеются две пары зубьев с увеличенным расстоянием между ними по сравнению с другими зубьями (рис.5.90). Это позволяет компенсировать изменение расстояния между зубьями зубчатого колеса и, тем самым, уменьшить износ зубчатого ремня.

 

Рис. 5.90. Шкивколенчатого вала с увеличенным расстоянием между зубьями:

1 – увеличенное расстояние между зубьями; 2 – основное расстояние между зубьями

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-11-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: