Цифровые сети с интегральным обслуживанием (ISDN-технология)




Лабораторная работа

Тема: телекоммуникационные сети

Цель работы: изучить основные виды телекоммуникационных сетей

Вопросы:

Привести классификацию телекоммуникационных сетей

Описать основное назначение модемов, основные виды модемов.

Описать для чего используются ISDN сети, принцип их функционирования

Описать принцип функционирования технологии xDSL.

Описать основные виды, принцип функционирования мобильной связи.

Материал

В зависимости от вида передаваемых данных телекоммуникационные сети делятся на:

• аналоговые сети;

• цифровые сети.

К современным телекоммуникационным сетям предъявляются два основных требования:

• интеграция - возможность передачи в сети данных разных типов (неоднородного трафика), предъявляющих разные требования к качеству передачи;

• высокие скорости передачи за счет использования широкополосных каналов связи (построения широкополосных сетей передачи данных).

В зависимости от назначения в структуре современных телекоммуникационных сетей выделяют несколько уровней иерархии (рис.61):

• абонентские сети (А), представляющие собой домашние, офисные и корпоративные сети на основе LAN или WAN;

• сети доступа (Д), объединяющие потоки от нескольких абонентских сетей в единый поток, направляемый в магистральную сеть;

• магистральная сеть (М), представляющая собой высокоскоростную широкополосную сеть на основе первичных транспортных сетей (волоконно-оптических, спутниковых и т.д.).

Сети доступа могут быть построены на основе:

Рис. 61

• коммутируемых каналов - традиционные аналоговые телефонные сети (ТфОП) и цифровые сети ISDN;

• выделенных каналов - от аналоговых каналов ТЧ (тональной частоты) с полосой пропускания 3,1 кГц до цифровых каналов SDH с пропускной способностью десятки Гбит/с;

• коммутации пакетов технологии Х25, Frame Relay, АТМ, а также TCP/IP (Internet).

Магистральные сети строятся обычно на основе выделенных цифровых каналов с пропускными способностями до десятков Гбит/с.

Сети доступа и магистральные сети образуют транспортную (опорную) систему, назначение которой быстрая и надежная доставка данных.

Транспортные системы на основе выделенных каналов можно разбить на 2 класса: цифровые (цикловые) и аналоговые (нецикловые).

Аналоговые транспортные системы реализуются в основном на основе существующих телефонных каналов.

Цифровые транспортные системы могут быть реализованы на основе следующих технологий:

• плезиохронные (PDH);

• синхронные (SDH);

• асинхронные (АТМ).

Модемная связь

Методы передачи данных по телефонным каналам с использованием модемов задаются в виде рекомендаций (стандартов) серии V.

Основные функции модемной связи, сформулированные в рекомендациях серии V, представлены на рис. 62.

Модемы должны обеспечивать защиту передаваемых данных от ошибок, возникающих в каналах связи и в аппаратуре передачи данных, путем контроля и коррекции ошибок.

Рис. 62

Коррекция ошибок (еrrоr соrrесtiоn) - отделение полезного сигнала от шумов и исправление возникающих в процессе связи ошибок.

Модемы при передаче данных используют алгоритмы сжатия данных, что повышает скорость обмена и уменьшает время передачи.

Сжатие данных (data compression) - кодирование информации с целью уменьшения её объёма. При передаче данных по телефонному каналу используются средства для автоматической упаковки-распаковки данных.

Модемные стандарты серии V по передаче данных по телефонным линиям (рис.63) определяют назначение, тип канала связи, вид модуляции, скорость передачи.

Классификация модемов представлена на рис. 64.

Рис. 63

1. По функциональному назначению модемы делятся на:

Рис. 64

а) телефонные;

б) телеграфные;

в) сотовые (радиомодемы);

г) факс-модемы;

д) кабельные, предназначенные для передачи данных по кабельным линиям связи, в частности по сети кабельного телевидения со скоростью до 10 Мбит/с

2. По конструктивному исполнению модемы могут быть:

• внешние, подключаемые кабелем к разъему RS-232 персонального компьютера;

• внутренние - в виде платы, устанавливаемой внутри компьютера.

3. По способу передачи данных (принципу работы в линии) модели делятся на:

а) синхронные, использующие синхронный способ передачи данных, при котором каждый бит посылается через фиксированный интервал времени с использованием синхронизации приемного и передающего устройства; синхронизация обеспечивается путем передачи управляющей информации и использования в обоих устройствах тактовых генераторов; синхронный режим целесообразно применять при организации связи по типу "точка-точка" через выделенные каналы связи;

б) асинхронные, использующие асинхронный способ передачи данных, при котором каждый символ (реже слово или небольшой блок) посылается отдельно и между данными могут быть произвольные промежутки времени; для распознавания поступающих данных каждый переданный элемент содержит стартовый и стоповый биты; этот способ известен также как старт-стоповая передача; модем работает в асинхронном режиме при использовании коммутируемых каналов связи;

4. По способу реализации протоколов коррекции ошибок и сжатия данных модемы бывают:

• с аппаратной реализацией;

• с программной реализацией.

Цифровые сети с интегральным обслуживанием (ISDN-технология)

Модемная передача компьютерных данных по абонентским линиям (АЛ) телефонных сетей позволяет в идеальных условиях (на пути передачи имеются только цифровые АТС и все каналы связи высокого качества) достичь предельной скорости в 56 кбит/с, что явно не достаточно для передачи мультимедийных данных, в частности видео, со сколь-нибудь приемлемым качеством. Для обеспечения более высоких скоростей передачи данных по АЛ была разработана технология, получившая название ISDN.

Цифровые сети с интегральным обслуживанием — ЦСИО (Integrated Services Digital Networks - ISDN) - цифровая сеть, построенная на базе телефонной сети связи, в которой могут передаваться сообщения разных видов - данные, а также оцифрованные видеоизображения и речь.

Обычная телефонная связь ориентирована на передачу голоса и позволяет модемам обмениваться данными со скоростью не выше 56 кбит/с. ISDN разработана специально для того, чтобы обойти ограничение по скорости передачи данных, но сохранить совместимость с существующими телефонными сетями.

Сеть ISDN совместима "сверху вниз" с телефонными сетями: можно позвонить с обычного телефона на номер ISDN и в обратном направлении в режиме "голосовая связь", а передача данных со скоростью 64 кбит/с и выше возможна только между двумя терминалами ISDN.

Существенная особенность ISDN - это многоканальность, т. е. возможность передавать данные и речь одновременно. Поскольку в интерфейсе ISDN предусмотрен служебный канал, режим передачи может быть изменен без разрыва соединения.

ISDN по сравнению с обычной модемной связью обеспечивает:

• более высокую скорость передачи данных;

• более высокую надежность;

• принципиально иное качество взаимодействия между абонентами.

Преимущества сетей ISDN:

1) сокращение времени установления соединений за счет использования выделенного канала сигнализации и передачи по нему сигналов управления и взаимодействия (занятие линии, набор номера, ответ, разъединение и т.д.) в цифровом виде;

2) универсальность использования линий возможность осуществлять по одним и тем же линиям как телефонные переговоры, так и передачу данных;

3) сопряжение служб - возможность организации телетекста, телекса или телефакса с соответствующим устройством в любой точке земного шара.

ISDN одновременно предоставляет различные виды связи:

• телефонную;

• модемную;

• по выделенному каналу связи.

ISDN целесообразно применять в тех случаях, когда необходимо периодически (но не постоянно) передавать средние и большие объемы данных на любые расстояния с высокой скоростью и надежностью.

Абонентское оборудование и интерфейсы ISDN показаны на рис.65, где: S-соединение - 4-проводная витая пара. Если оконечное оборудование не имеет интерфейса ISDN, то оно подключается к S через специальный адаптер ТА. Устройство NT2 объединяет S-линии в одну Т-шину, которая имеет два провода от передатчика и два - к приемнику. Устройство NT1 реализует схему эхо-компенсации (рис. 66) и служит для интерфейса Т-шины с обычной телефонной двухпроводной абонентской линией U.

 

Рис. 65

В отличие от традиционных телефонных сетей управляющая информация передаётся по специальным каналам, не загружая каналы передачи данных.

Рис. 66. Эхо-компенсация

В ISDN различают два типа канала:

• канал В - для передачи голоса и данных с пропускной способностью 64 кбит/с;

• канал D - служебный (сигнальный) канал передачи управляющей информации. Один канал типа D обслуживает 2 или 30 В-каналов и обеспечивает возможность быстрой генерации и сброса вызовов, а также передачу информации о поступающих вызовах, в том числе о номере обращающегося к сети абонента.

Стандарты определяют 3 интерфейса доступа к ISDN (типа ISDN):

1) базовый - BRI;

2) первичный - PRI;

3) широкополосный - B-ISDN.

Интерфейс ВRI (Basic Rate Interface) - стандартный (базовый) интерфейс, обозначаемый как (2B+D). Это означает, что для передачи данных используется 2 канала В со скоростью передачи 64 кбит/с по каждому каналу и 1 служебный (сигнальный) канал D со скоростью передачи 16 кбит/с. Таким образом, пропускная способность интерфейса BRI равна: 2*64 кбит/с+1*16 кбит/с = 144 кбит/с.

BRI предназначен для подключения телефонной аппаратуры (телефонов, факсов, автоответчиков и т.п.) и компьютеров к ISDN.

Интерфейс РRI (Primary Rate Interface) объединяет несколько BRI и соединяется с узлом. В зависимости от конкретных местных стандартов он включает в себя 23 В-канала (США и Япония) или 30 В-каналов (Европа), поддерживая интегральные скорости передачи данных 1,544 Мбит/с и 2,048 Мбит/с соответственно.

B-ISDN (Broadband ISDN) обеспечивает высокие скорости передачи (155 Мбит/с и 622 Мбит/с), что позволяет реализовать передачу видеоданных.

Технологии xDSL

xDSL (Digital Subscriber Line) - технологии передачи цифровых данных по телефонным каналам связи, обеспечивающие гораздо более высокие скорости передачи по обычным медным проводам, чем традиционная модемная связь и ISDN. Высокие скорости достигаются за счет использования ряда технических решений, в частности эффективных линейных кодов и адаптивных методов коррекции искажений на линии.

xDSL объединяет различные технологии (рис.67), которым в аббревиатуре xDSL соответствуют разные значения символа «х». Эти технологии различаются в основном по используемому способу модуляции и скорости передачи данных.

HDSL (High-dаtа-rаtе DSL) высокоскоростная цифровая абонентская линия, обеспечивающая симметричную дуплексную передачу данных по двум телефонным парам со скоростями до 2,048 Мбит/с в каждом направлении на расстояние до 4,5 км.

Рис. 67

SDSL (Symmetrical DSL) однопарная версия HDSL, обеспечивающая симметричную дуплексную передачу цифрового потока со скоростью 2048 кбит/с по одной паре телефонного кабеля.

ADSL (Asymmetrical DSL) - асимметричная цифровая абонентская линия, позволяющая по одной паре телефонного кабеля передавать данные от пользователя в сеть на скоростях от 16 кбит/с до 3,5 Мбит/с и в обратном направлении из сети к пользователю со скоростями до 24 Мбит/с на максимальное расстояние до 5,5 км.

RADSL (Rate-Adaptive ADSL) - ADSL с адаптируемой скоростью, учитывающей характеристики конкретной линии (длина, соотношение сигнал-шум и т.п.), за счет чего достигается максимальная пропускная способность в реальных условиях.

VDSL (Very-high-data-rate DSL) сверхвысокоскоростная цифровая абонентская линия, имеющая по сравнению с ADSL значительно более высокие скорости передачи данных: до 56 Мбит/с в направлении от сети к пользователю и до 11 Мбит/с от пользователя к сети при работе в асимметричном режиме и при работе в симметричном режиме — примерно 26 Мбит/с в каждом направлении при максимальном расстоянии до 1,3 км.

Наиболее распространённой технологией является ADSL, основные принципы организации которой рассматриваются ниже.

Увеличение скорости передачи данных в ADSL обусловлено предоставлением пользователю большей полосы пропускания абонентской линии, чем при традиционной телефонной связи: 1 МГц вместо 3100 Гц. Это достигается за счёт исключения на пути передачи данных фильтров, ограничивающих полосу телефонного канала в интервале от 300 Гц до 3400 Гц.

В пределах полосы в 1 МГц формируется 3 частотных диапазона для передачи трёх потоков данных (рис.68):

• телефонных (голосовых) в диапазоне частот от 300 Гц до 4 кГц;

• компьютерных от пользователя в сеть в диапазоне частот от 4 кГц до 200 кГц;

• от сети к пользователю в диапазоне частот от 200 кГц до 1 МГц.

Таким образом, для передачи цифровых данных формируются два асимметричных частотных каналов:

Рис. 68

• высокоскоростной (до 24 Мбит/с) нисходящий канал передачи данных из сети в компьютер пользователя;

• низкоскоростной (от 1 6 кбит/с до 3,5 Мбит/с) восходящий канал передачи данных из компьютера в сеть.

Третий канал предназначен для передачи телефонных разговоров.

Асимметричность каналов для передачи компьютерных данных обусловлена тем, что традиционно объём передаваемых данных от пользователя в сеть гораздо меньше объёма данных, передаваемых в обратном направлении. При необходимости можно изменять границы частотных диапазонов для перераспределения скоростей передачи данных в исходящем и восходящем каналах.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: