ЧАСТЬ 3 ВНУТРЕННЯЯ ВИБРАЦИЯ 9 глава




Им уже сконструированы и передающий аппарат, и электрический приемник, который на больших расстояниях чувствителен к сигналам передатчика, независимо от земных токов и стран света. И достигается это при удивительно небольших затратах энергии.

Естественно, что г-н Тесла не склонен разъяснять все детали своего изобретения, но дает понять, что использует то, что пока можно назвать электростатическим равновесием, и что если нарушить его в любой точке Земли, то полученное возмущение можно с помощью соответствующего аппарата воспринять в отдаленном пункте. Таким образом, разработав конкретные приборы, мы получим реальное средство передачи и приема сигналов. Г-н Тесла сказал о своей убежденности в этих возможностях, причем сказал лишь после того, как получил удовлетворительные результаты испытания сконструированного им аппарата. Нужно проделать еще большую работу, и он с тех пор очень серьезно занимается этой проблемой.

Деталями, по понятным причинам, мы пока не располагаем и сейчас лишь констатируем заявление г-на Теслы о том, что он действительно осуществил беспроводную связь на довольно больших расстояниях при малых затратах энергии.

Ему лишь осталось усовершенствовать свой аппарат, чтобы неограниченно увеличить дальность его действия. Давнишний эксперимент Морзе по передаче сообщений на 64 км имел под собой гораздо менее твердое основание, чем возможности беспроводной связи сегодня.

Достойна внимания и работа Теслы с высокочастотными токами высоких напряжений. Еще в 1891 году он предсказал нынешние результаты и в отношении освещения с помощью вакуумной трубки, и в отношении связи без проводов. Первое он уже довел до стадии, когда может показывать публике явления, связанные с электростатическими молекулярными силами. В результате бесчисленных экспериментов г-н Тесла поднял ошеломлявшую тогда частоту тока в 10000 герц до привычной ныне величины в 2000000 герц.

Это сообщение отмечает рождение современного радио - того радио, что распространено сегодня, -родившегося на лодочке, проплывшей с приемником вверх по реке Гудзон больше сорока километров от лаборатории на Хьюстон-стрит - расстояние, составлявшее лишь небольшую часть дальности действия аппарата, но вполне достаточное для демонстрации его возможностей. Такое свершение было достойно самых громких объявлений вместо весьма скромного заявления Теслы и еще более консервативной манеры подачи этой новости «Электрикал ривью». Но Тесла не только должен был защитить свои патентные права, которые оказались бы под угрозой из-за преждевременной огласки, но и остерегаться охотников за чужими изобретениями и нарушителей патентного права, с которыми он уже имел опыт неприятного общения. А издатели «Электрикал ривью» вполне естественно боялись навлечь на себя критику как последствие слишком оптимистического сообщения, сделанного на основании далеко не полной информации.

Основные патенты на систему Теслы были получены 2 сентября 1897 года - ровно через два месяца после его заявления - и проходят под номерами 645576 и 649621. В этих патентах он описывает все основные особенности радиопередачи и приемных схем, которые применяются сегодня. Закрепив за собой патентные права, Тесла без промедления начал рассказывать всем о своих открытиях. Его демонстрация превратилась в зрелищное представление на Мэдисон-сквер-гарден.

 

*

 

Беспроводная передача информации - это современное осуществление одного из древнейших стремлений человека, который всегда мечтал об устранении расстояний с помощью общения через разделяющее пространство без материальных проводников. Первыми экспериментаторами - главным образом, с телефоном - были энтузиасты, искавшие способ беспроводного электрического сообщения, при котором голос передавался бы через пространство также, как переносится воздухом звук. В 1879 году Дэвид Эдвард Хьюз заметил, что, когда где-нибудь в доме возникает электрическая искра, он слышит в своей телефонной трубке шум. Он проследил этот эффект до действия угольного порошка в контакте с металлическим диском в телефонной трубке: когда, действуя как детектор пространственных волн, порошок слегка слипался, сопротивление всей его массы падало, и в трубке раздавался щелчок.

Профессор А.Э. Долбер из Колледжа Тафтса заинтересовался этим наблюдением и в 1882 году построил на этом принципе демонстрационную модель, но без телефонного аппарата. Он использовал индукционную катушку для создания волн и угольный порошок для их обнаружения. Этой есть та самая «беспроводная связь», которую четырнадцать лет спустя «изобрел» Маркони. Эдисон, нанятый компанией «Вестерн юнион телеграф», чтобы уничтожить монополию, связанную с изобретением телефона Беллом, добился успеха в 1885 году, послав «беспроводное» сообщение из движущегося поезда.

В поезде был натянут провод, проходивший параллельно телеграфным проводам, тянувшимся вдоль железнодорожного пути. Между проводом в поезде и проводами вдоль пути возникал индукционный эффект, преодолевавший небольшое расстояние между поездом и телеграфной линией, - тот эффект, что становится иногда причиной раздражающего вмешательства в телефонные разговоры или взаимных помех между двумя телефонными линиями, проходящими рядом друг с другом. Приблизительно в то же время подобный эксперимент поставил в Англии У.М. Прис. Но из-за очень коротких расстояний, на которых работают такие системы, они не пригодны для практического применения.

Совершенно иной вид беспроводной связи разрабатывался в 1880 и 1881 годах Александером Грейамом Беллом.

Его называли «радиофоном», но Белл настаивал на названий «фотофон». Фотофон передавал голос посредством светового луча. Передатчик состоял из очень тонкого стеклянного или слюдяного зеркала, которое вибрировало от звуков голоса. Зеркало отражало луч - как правило, солнечного света - на отдаленное приемное устройство. Простой приемник состоял из химической пробирки, заполненной специальным материалом. Пробирка закрывалась пробкой, из которой выходили две резиновые трубочки, вставлявшиеся в уши. В качестве детектора в пробирке можно было использовать самый разнообразный наполнитель. Когда луч света, несущий вибрации голоса, соприкасался с наполнителем, тот поглощал тепло, а тепло вызывало вибрации воздуха в пробирке, который и воспроизводил голос. В качестве наполнителя Белл также использовал селен, который реагировал на видимые лучи и создавал электрический эффект. Очевидно, что как основа системы беспроводного сообщения результаты этих опытов не имели большого практического значения.

В 1845 году в Лондоне Майкл Фарадей описал свою теорию взаимосвязи между светом и электромагнитными силовыми линиями, а в 1862 году Джеймс Клерк Максвелл опубликовал анализ работы Фарадея, где математически обосновал теорию о том, что световые волны имеют электромагнитную природу и что такие волны могут быть как короче, так и длиннее известных волн видимого света Ученым был брошен вызов доказать существование подобных волн.

В немецком городе Бонне профессор Генрих Герц с 1886 по 1888 годы занимался исследованием более длинных волн, чем световые и тепловые. Он посылал их с помощью искрового разряда индукционной катушки и улавливал из пространства с небольших расстояний в виде крошечной искры, которая проскакивала в проволочном кольце. В это же время в Англии сэр Оливер Лодж искал способы измерения коротких электрических волн в проводных линиях.

Таково было положение в научном мире, когда в 1889 году Тесла начал свою работу. План беспроводного сообщения, который он представил в 1892 и в 1893 годах, как мы еще увидим, показывает, что своей замечательной концепцией и огромными для своего времени знаниями он намного опередил своих современников.

Когда осенью 1889 года Тесла оставил завод Вестингауза, то сразу же приступил к следующей фазе развития системы переменного тока - он занялся разработкой нового способа распределения энергии посредством высокочастотных переменных токов, которые по своему значению должны были превзойти его многофазную систему, и за два последовавших года изучил принципы, на которых возможно беспроводное распространение энергии. Действие этих принципов он показал с помощью мощных катушек в своей лаборатории. Передача информации, названная позднее «беспроводной связью», явилась лишь одним из аспектов более широкого проекта.

В 1892 году Тесла описал первую электронную лампу, задуманную как детектор в радиосистеме, и показал ее особенности в своих лекциях в Лондоне и Париже в феврале и марте того же года. (Однако, эта лампа была разработана еще в 1890 году.) В феврале и марте следующего, 1893 года в лекциях в Институте Франклина в Филадельфии и на собрании Национальной ассоциации электрического освещения в Сент-Луисе он описал свою систему радиопередачи и детально раскрыл ее принципы.

Электронная лампа Теслы, изобретенная им в 1890 году, явилась прообразом детекторных и усилительных ламп, которые используются сегодня. Демонстрация этой лампы стала событием, занесенным в архивы четырех научных обществ, которым он показывал ее в феврале-марте 1892 года, -это Институт инженеров-электриков и Королевское общество в Лондоне, Общество физиков Франции и Международное общество инженеров-электриков в Париже. На этих лекциях он говорил:

Если где-нибудь в пространстве происходит измеримое движение, такая кисть должна показать его. Это, так сказать, луч света, не имеющий ни трения, ни инерции. Думаю, она может найти практическое применение в телеграфии. С помощью такой кисти можно с любой скоростью посылать сообщения через Атлантику, например, поскольку ее чувствительность может быть настолько высокой, что она будет реагировать на малейшие изменения.

«Кистью» в лампе Теслы был пучок электронов, хотя электрон тогда еще не был открыт. Тем не менее Тесла дал правильное описание его сути и с удивительной точностью объяснил странное явление. Пучок электронов обладал такой чувствительностью, что отклонялся в сторону дугообразного магнита толщиной в 2,5 см, расположенного в 190 см от него.

Пучок, или кисть, отклонялся в противоположную сторону от человека, находившегося на расстоянии многих футов от лампы. А если человек ходил вокруг лампы на расстоянии даже трех метров, пучок тоже начинал вращаться, причем его исходный конец всегда был направлен на движущийся объект. Он колебался от малейшего движения пальцем и даже от напряжения мускула.

В той же лекции 1892 года, на которой он описал эту первую электронную лампу, он показывал и лампы, которые светили, не соединяясь проводами с источником питания (беспроводное освещение), и электродвигатель, работавший точно так же (беспроводное питание). Эти же достижения он демонстрировал и на Колумбийской экспозиции Всемирной ярмарки в Чикаго в начале 1893 года.

Опираясь на весь этот опыт, дававший ему полную уверенность в том, что его система совершенно практична и работоспособна, Тесла на собрании Национальной ассоциации электрического освещения в феврале-марте 1893 года сделал весьма осторожное и консервативное заявление относительно своего плана. Даже на этих лекциях 1893 года он смог провести демонстрацию способа беспроводной передачи информации. В лекционном зале он поместил одну из своих резонансных катушек, увенчанную одной из его электронных «кистевых» ламп, или ламп низкого давления, и заставил ее реагировать на сигналы с той же длиной волны от катушки, находившейся на значительном расстоянии от здания. В его лаборатории подобный эксперимент был самым обычным делом.

Эта установка, однако, имела локальный радиус действия, тогда как он строил планы относительно радиопередачи во всемирном масштабе, для чего требовалась гораздо более мощная аппаратура, чем имелась у него на тот момент. Подать чисто локальный эффект как пример работы системы со всемирным радиусом действия, даже если результаты наблюдений были одинаковы, означало интеллектуальную непорядочность, до которой Тесла не мог опуститься. Но эта демонстрация беспроводной связи была более эффектной и впечатляющей, чем все то, что за более чем шесть последовавших лет показали остальные изобретатели. Описывая свою систему всемирной связи на собрании Национальной ассоциации электрического освещения в 1893 году, он сказал:

В связи с резонансными эффектами и проблемой передачи энергии по одному проводу, которая уже рассматривалась, я хочу сказать несколько слов о том, что постоянно занимает мои мысли и касается всеобщего блага. Я имею в виду передачу информационных сигналов и даже, пожалуй, энергии на любые расстояния без проводов. Я все больше убеждаюсь в практической осуществимости такого замысла. И, хотя я прекрасно знаю, что подавляющее большинство ученых не поверит, что здесь можно быстро получить практические результаты, но думаю, что все согласятся с тем, что успехи, достигнутые за последние годы рядом исследователей, дают основу для размышлений и экспериментов в этом направлении. Убеждение мое окрепло настолько, что я больше не смотрю на проект передачи энергии и информации как на чисто теоретическую возможность, как на серьезную электротехническую задачу, которая должна быть когда-нибудь выполнена.

Идея передачи информации без проводов это естественное следствие самых последних результатов изысканий в области электричества. Некоторые энтузиасты выразили убеждение в возможности телефонной связи на любых расстояниях через воздушное пространство. Мое воображение не заходит так далеко, но я твердо уверен в том, что с помощью мощных машин вполне реально вызывать возбуждения в электростатическом состоянии Земли и таким образом передавать информационные сигналы, а возможно, и энергию. В самом деле, что может помешать осуществлению такого замысла?

Нам известно теперь, что электрические вибрации можно передавать по одножильному проводу. Почему бы нам тогда не воспользоваться для этой цели Землей? Не надо бояться мысли о расстоянии. Утомленному путнику, считающему помильные столбы, Земля может казаться очень большой, но счастливейшему из людей - астроному, - обозревающему небеса и судящему о размерах земного шара с их высот, он кажется очень маленьким. Я думаю, таким же он должен казаться и электротехнику, ибо, когда он думает о скорости, с какой распространяются по земле электрические возмущения, все его понятия о дальности расстояния теряют всякий смысл.

Прежде всего, очень важно узнать, какова емкость Земли и каков ее заряд, если она электризована. Хотя у нас нет явных доказательств существования в пространстве заряженного тела, если рядом нет других тел с противоположным зарядом, весьма вероятно, что Земля является таким телом, поскольку, как бы она ни отделилась - а именно таков общепринятый взгляд на ее происхождение, - она должна была сохранить заряд, как происходит при любом механическом разделении…

Если мы когда-нибудь установим частоту колебаний земного заряда при его возмущении относительно противоположно заряженной системы или известной цепи, то узнаем, возможно, важнейший для повышения благополучия человечества факт. Я предлагаю произвести измерение этой частоты с помощью электрического осциллятора или источника переменных токов.

Один из контактов этого источника будет подсоединен к земле - скажем, к городской водопроводной магистрали, - а другой к изолированному телу с большой поверхностью. Возможно, что внешние проводящие слои атмосферы, или вакуума, несут противоположный заряд и что вместе с Землей они образуют конденсатор большой емкости. В таком случае частота колебаний может быть очень большая, и для эксперимента можно использовать генератор переменного тока. Я преобразовал бы тогда ток в как можно более высокий потенциал и подсоединил бы концы вторичной - высоковольтной - обмотки преобразователя к земле и к изолированному телу. Меняя частоту токов, внимательно следя за потенциалом изолированного тела и отслеживая возмущения в различных близлежащих точках земной поверхности, можно выявить резонанс.

Если, как, по всей вероятности, полагает большинство ученых, период будет крайне малым, тогда генератор не подойдет и придется сконструировать специальный электрический осциллятор.

И, быть может, не удастся получить такой высокой частоты. Но удастся это или нет, есть у Земли заряд или нет и какова бы ни была частота ее колебаний, несомненно возможно вызвать электрическое возмущение, достаточно сильное для восприятия специальными приборами в любой точке земной поверхности. И в этом мы убеждаемся ежедневно.

Поэтому теоретически не нужно много энергии, чтобы возбудить возмущение, ощутимое на большом расстоянии или даже на всей поверхности земного шара. Абсолютно несомненно, что в любой точке в пределах определенного радиуса от источников возмущения в настроенном соответствующим образом приборе с катушкой самоиндукции и емкостью может возникнуть резонанс. Но это не единственное, что можно сделать. Взяв еще один источник- ul, подобный и, - или любое число таких источников, можно настроить их на синхронную работу с первым и распространить по большой территории усиленную таким образом вибрацию или электрический поток, направленный к источнику ul или от него в зависимости от того, совпадает ли этот поток или противоположен по фазе с током источника и.

Думаю, нет сомнений в возможности функционирования в городе электрических приборов, подключенных через почву или водопроводную систему и работающих посредством резонанса от электрического осциллятора, расположенного в центре города. Но практическое решение этой проблемы принесет несоизмеримо меньше пользы человеку, чем осуществление замысла переноса информации или даже энергии на любые расстояния через землю или окружающую среду. Если это вообще возможно, то расстояние теряет свое значение. Но сначала нужно создать специальную аппаратуру, которая позволит разрешить проблему. Много размышляя над этим, я пришел к твердому убеждению, что сделать это можно, и надеюсь, мы доживем до этого.

О том же говорил он и в лекции для Института Франклина, на которой произнес и такие слова: Если посредством мощных машин вызвать высокочастотные колебания земного потенциала, то по заземленному проводу, поднятому на определенную высоту, пойдет ток, который можно будет усилить, подсоединив свободный конец провода к предмету определенных размеров…

Эксперимент, представляющий огромный научный интерес, лучше всего было бы провести на судне, находящемся в открытом море. Даже если при этом нельзя было бы передавать энергию для питания оборудования, то уж информацию можно было бы передавать наверняка.

Таким образом, в этих лекциях Тесла изложил теорию беспроводной связи, которую подтвердил лабораторными экспериментами за три предшествовавших года.

Он описал самые необходимые условия, которые будут понятны любому не связанному с техникой человеку, имеющему элементарное представление о принципах радиосвязи. Это:

1) антенна, или направленный вверх провод;

2) заземление;

3)контур из индуктивности и емкости с антенной и заземлением; 4) регулируемая индуктивность и емкость (для настройки); 5)передатик и приемник, настроенные в резонанс друг с другом; 6) ламповые детекторы. А еще раньше он изобрел и громкоговоритель. Это основные принципы радио, которые применяются сегодня в каждом передатчике и приемнике.

* Итак, сегодняшнее радио - это плод гения Николы Теслы. Он первым изобрел как систему в целом, так и все ее принципиальные электрические составляющие. Следующим за Теслой человеком, кто, как считается, в значительной степени способствовал изобретению радио, является великий английский ученый сэр Оливер Лодж, но даже он не смог уловить всей нарисованной Теслой картины.

В начале 1894 года Лодж поместил искровую петлю Герца в открытый с одного конца медный цилиндр и получил тем самым луч ультракоротких колебаний, которые можно было передавать в любом направлении. Точно так же он сделал и приемник. Поскольку поступающие волны можно было принимать лишь с одного направления, то приемник мог это направление определять. С этим устройством он на два года опередил Маркони. Летом того же года во время демонстрации перед Британской ассоциацией содействия развитию науки в Оксфорде он с помощью усовершенствованного аппарата послал сигналы Морзе между двумя зданиями, отстоявшими друг от друга на несколько сотен футов.

Поэтому нет ничего удивительного в том, что Маркони, начавший свои исследования в области беспроводной связи в 1895 году, не произвел особой сенсации в научных кругах Англии, когда прибыл из Италии в Лондон со своим аппаратом, во всех основных чертах напоминавшим устройство, показанное Лоджемещев1894году.

Маркони использовал параболический рефлектор, поэтому его аппарат лишь немногим отличался от электрического прожектора, но он ввел альтернативу параболическому излучателю и снабдил как передатчик, так и приемник антенной, или направленным вверх отрезком провода, и заземлением. Именно это Тесла и описал в своем плане, опубликованном за три года до того.

Когда Герц ставил свои опыты, чтобы показать общую природу света и длинных электромагнитных волн, он намеренно старался брать самые короткие волны, которые несложно было получать. Они измерялись в дюймах, которые намного меньше метра. Эти волны прекрасно подходили для его экспериментов. Когда же радиоинженеры перенимали его методы, они начинали использовать короткие волны, даже не задаваясь вопросом о длине волны, подходящей для беспроводной связи. Мысль о том, что можно посылать и принимать волны и другой длины, по-видимому, даже не приходила им в голову - всем, кроме Теслы.

Тесла в духе истинного ученого не поленился точно повторить опыты Герца и опубликовал полученные результаты, подчеркнув ряд важных особенностей его экспериментальных методов и указав на их недостатки.

Проведя эксперименты с широким диапазоном волн высокочастотных токов и изучив свойства каждой части спектра, Тесла установил, что короткие волны совершенно не годятся для связи. Он узнал, что наиболее пригодны волны длиной от 100 до многих тысяч метров и что сочетание индукционной катушки с вибратором Герца [ix] неприменимо для возбуждения необходимых электрических пульсаций. Даже с самой эффективной на сегодняшний день аппаратурой ученые не могут использовать для связи (кроме особых случаев) ультракороткие волны, которые разумно отверг Тесла и которые из-за своей неопытности пытался использовать Маркони.

История последовавших лет развития беспроводной связи - это история отказа от коротких волн Лоджа, Маркони и их последователей и перехода на более длинные волны, описанные Теслой. Это история провала их способа передачи сигналов и замена его более совершенным и высокоэффективным методом Теслы через настройку передатчика и приемника. Это также история принятия незатухающих колебаний Теслы.

Кроме того, эти продвигавшиеся на ощупь исследователи видели в беспроводной связи лишь способ передачи сигналов из точки в точку, или от одной станции на другую. Никто из них не мог предвидеть систему широкого радиовещания, которую Тесла описал еще в 1893 году. Однако именно система, задуманная Теслой, и работает сегодня, но кто слышал хотя бы слово о признании Теслы ее основателем?

 

ДЕВЯТЬ

 

Тесла был плодовитым открывателем новых обширных областей знания. Он обрушивал свои открытия на мир с такой скоростью и с такой беззаботностью, что как будто парализовал умы ученых своего времени. Он был слишком занят, чтобы тратить время на техническую или коммерческую сторону каждого нового открытия, - слишком много было перед ним других новых и важных откровений, которые необходимо было явить миру. Открытия не были случайными событиями для него. Он видел их мысленным взором задолго до того, как получал их в лаборатории. У него была четкая программа изысканий в девственных областях, где еще никто не проводил исследований, и он надеялся, что, когда выполнит ее, у него будет впереди еще долгая жизнь, чтобы заняться практическим приложением того, что он уже открыл.

А между тем он обнаружил целый новый мир интересных явлений, связанных с разрядами в его катушках при пропускании через них токов чрезвычайно высоких частот. Он изготавливал катушки все больших и больших размеров и экспериментировал с самыми разнообразными их формами. От обычной цилиндрической катушки он перешел к конусной форме, а от нее к плоской спиральной или дисковой катушке.

Токи чрезвычайно высокой частоты подарили Тесле математический рай, где он мог вволю наслаждаться своими уравнениями. Благодаря математическим способностям и необыкновенному феномену воображения он нередко очень быстро делал целый ряд открытий, на которые с обычным лабораторным оснащением уходит очень много времени. Так были открыты явления резонанса и разработаны резонансные цепи.

Поскольку волны были относительно короткими, то изготавливать конденсаторы для резонансных контуров было сравнительно просто. В резонансном контуре электрические колебания происходят ритмично, как колеблется звучащая струна музыкального инструмента, образуя петли равной величины с точками покоя между ними [x]. Петель может быть от одной до целой серии.

Не Тесла выдвинул идею электрического резонанса. Она была неотъемлемым элементом данного лордом Кельвином математического описания разряда конденсатора, а также физической сути переменных токов. Но Тесла извлек ее из глубин математического уравнения и превратил в яркую физическую реалию. Электрический резонанс аналогичен акустическому, который представляет собой естественное свойство материи. Но реальных цепей, в которых мог возникнуть резонанс, не было до тех пор, пока Тесла не начал работать с переменными токами, особенно с токами высоких частот. Приложив руку мастера к исследованиям в этой области, он развил принцип резонанса в отдельных цепях, состоящих из подобранных емкости и индуктивности, и добился усиления эффектов индуктивной связью двух резонансных контуров, а также особых проявлений резонанса в контуре, настроенном на четверть длины волны питающего тока. Только истинный гений мог нанести подобный штрих.

Две петли вибрирующей струны составляют полную длину волны, а одна петля половину этой длины, поскольку пучность [xi] одной петли находится вверху, когда пучность соседней внизу.

Между двумя петлями находится узловая точка (узел), которая не движется. Расстояние от узла до пучности петли как раз и равно четверти длины волны. Четверть длины волны принимается за единицу, узел неподвижен, а пучность соответствует вершине амплитуды колебания.

Тесла обнаружил, что при настройке катушек на четверть длины волны один конец катушки остается электрически нейтральным, тогда как другой характеризуется огромной электрической активностью. Это был уникальный случай, когда один конец небольшой катушки инертен, а другой испускает град искр под напряжением в сотни тысяч и даже миллионов вольт. В качестве физической аналогии можно представить, что воды Ниагары, достигая края пропасти, не падали бы в нее, а гигантским фонтаном устремлялись бы вверх.

Катушка, рассчитанная на четверть длины волны, это электрическое соответствие вибрирующей ножке камертона, маятнику обычных часов или язычку музыкального инструмента [xii]. Однажды созданная, она кажется простой вещью, но придумать ее мог только гений. Своей несомненностью подобная идея могла озарить лишь выдающийся ум, опирающийся на широкие принципы, каким и был всю свою жизнь Тесла, и лишь в самом невероятном случае - тех, кто без вдохновения ковыряет технические устройства в надежде наткнуться на что-нибудь, на чем можно сделать деньги.

Высоковольтная катушка, на одном из концов которой нет напряжения, значительно упрощала многие проблемы. Одной из таких серьезных проблем для Теслы был способ изоляции вторичной высоковольтной обмотки трансформатора от его низковольтной первичной обмотки, возбуждающей энергию во вторичной. Открытие Теслы позволило полностью снять напряжение с одного конца вторичной обмотки, а саму обмотку подсоединить непосредственно к первичной или заземлить [xiii]. Другой же конец вторичной обмотки мог по-прежнему извергать молнии. Именно для этого разработал он конусную и дисковую катушки.

В лаборатории у Теслы было множество самых разных катушек. В начале своих исследований он установил, что если в лаборатории на какой-то длине волны работает катушка, то в остальных катушках, настроенных на эту длину волны или на одну из ее гармоник, вызывается резонансная реакция, проявляющаяся в виде искр вокруг них, хотя они никак не соединяются с работающей катушкой.

Это был пример беспроводной передачи энергии. Тесле требовалось провести ряд экспериментов, чтобы понять смысл этого явления. Он никогда не терялся на новых просторах, которые открывал. Ум его воспарял на такие высоты понимания, что он мог обозреть открытый им мир одним взглядом.

Тесла планировал эффектную демонстрацию нового принципа. На всех четырех стенах под потолком самого большого зала его лаборатории работники натянули на изолированных опорах провод, который шел от одного из осцилляторов.

Подготовка к эксперименту закончилась поздно ночью. Для испытаний Тесла взял две стеклянные трубки около метра длиной и чуть больше сантиметра в диаметре. Запаяв их с одного конца, он создал в них разрежение, и запаял с другого конца.

Тесла распорядился полностью затемнить помещение. Рабочие по его сигналу должны были включить осциллятор.

— Если моя теория верна, - пояснил он, - то, когда вы включите осциллятор, трубки превратятся в сияющие мечи.

Выйдя на середину зала, он велел выклюить свет. Лаборатория погрузилась в кромешную тьму. Один из рабочих держал руку на включателе осциллятора. - Включайте! - скомандовал Тесла.

Зал мгновенно наполнился ярким, причудливым голубовато-белым светом. Рабочие смотрели на высокую, худую фигуру Теслы, энергично размахивавшего подобием двух пламенных мечей. Стеклянные трубки горели неземным светом, а он делал выпады и парировал удары, словно сражался с двумя противниками.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: