Нахождение производных высших порядков.




Мы научимся находить производные высших порядков, а также записывать общую формулу «энной» производной. Кроме того, будет рассмотрена формула Лейбница таковой производной.

Вот функция: и вот её первая производная:

Нетрудно даже догадаться, что вторая производная – это производная от 1-й производной:

В принципе, вторую производную уже считают производной высшего порядка.

Аналогично: третья производная – это производная от 2-й производной:

Четвёртная производная – есть производная от 3-й производной:

Пятая производная: , и очевидно, что все производные более высоких порядков тоже будут равны нулю:

Помимо римской нумерации на практике часто используют следующие обозначения:
, производную же «энного» порядка обозначают через . При этом надстрочный индекс нужно обязательно заключать в скобки – чтобы отличать производную от «игрека» в степени.

Иногда встречается такая запись: – третья, четвёртая, пятая, …, «энная» производные соответственно.

Вперёд без страха и сомнений:

Пример 1

Дана функция . Найти .

Решение: что тут попишешь… – вперёд за четвёртой производной:

Четыре штриха ставить уже не принято, поэтому переходим на числовые индексы:

Ответ:

Хорошо, а теперь задумаемся над таким вопросом: что делать, если по условию требуется найти не 4-ю, а например, 20-ю производную? Если для производной 3-4-5-го (максимум, 6-7-го) порядка решение оформляется достаточно быстро, то до производных более высоких порядков мы «доберёмся» ой как не скоро. Не записывать же, в самом деле, 20 строк! В подобной ситуации нужно проанализировать несколько найдённых производных, увидеть закономерность и составить формулу «энной» производной. Так, в Примере №1 легко понять, что при каждом следующем дифференцировании перед экспонентой будет «выскакивать» дополнительная «тройка», причём на любом шаге степень «тройки» равна номеру производной, следовательно:

, где – произвольное натуральное число.

И действительно, если , то получается в точности 1-я производная: , если – то 2-я: и т.д. Таким образом, двадцатая производная определяется мгновенно: – и никаких «километровых простыней»!

Пример 2

Найти для функции .

Решение: чтобы прояснить ситуацию найдём несколько производных:

Полученные числа перемножать не спешим!


Пожалуй, хватит. …

На следующем шаге лучше всего составить формулу «энной» производной (коль скоро, условие этого не требует, то можно обойтись черновиком). Для этого смотрим на полученные результаты и выявляем закономерности, с которыми получается каждая следующая производная.

Во-первых, они знакочередуются. Знакочередование обеспечивает «мигалка», и поскольку 1-я производная положительна, то в общую формулу войдёт следующий множитель: . Подойдёт и эквивалентный вариант .

Во-вторых, в числителе «накручивается» факториал, причём он «отстаёт» от номера производной на одну единицу:

И в-третьих, в числителе растёт степень «двойки», которая равна номеру производной. То же самое можно сказать о степени знаменателя. Окончательно:

В целях проверки подставим парочку значений «эн», например, и :

Замечательно, теперь допустить ошибку – просто грех:

Ответ:

Пример 3

Найти функции .

Ещё раз повторим порядок действий:

1) Сначала находим несколько производных. Чтобы уловить закономерности обычно хватает трёх-четырёх.

2) Затем настоятельно рекомендую составить (хотя бы на черновике) «энную» производную – она гарантированно убережёт от ошибок. Но можно обойтись и без , т.е. мысленно прикинуть и сразу записать, например, двадцатую или восьмую производную. Более того, некоторые люди вообще способны решить рассматриваемые задачи устно. Однако следует помнить, что «быстрые» способы чреваты, и лучше перестраховаться.

3) На заключительном этапе выполняем проверку «энной» производной – берём пару значений «эн» (лучше соседних) и выполняем подстановку. А ещё надёжнее – проверить все найдённые ранее производные. После чего подставляем в нужное значение, например, или и аккуратно причёсываем результат.

В некоторых задачах, во избежание проблем, над функцией нужно немного поколдовать:

Пример 4

Записать формулу производной порядка для функции

Решение: дифференцировать предложенную функцию совсем не хочется, поскольку получится «плохая» дробь, которая сильно затруднит нахождение последующих производных.

В этой связи целесообразно выполнить предварительные преобразования: используем формулу разности квадратов и свойство логарифма :

Примечание: в данном случае это свойство срабатывает для всех «икс» из области определения функции, и поэтому мы получаем равносильное преобразование.

Совсем другое дело:

И старые подруги:

Обратите внимание, что 2-я дробь знакочередуется, а 1-я – нет. Конструируем производную порядка:

Контроль:

Ну и для красоты вынесем факториал за скобки:

Ответ:

А сейчас о незыблемой круговой поруке, которой позавидует даже итальянская мафия:

Пример 5

Дана функция . Найти

Восемнадцатая производная в точке . Всего-то.

Решение: сначала, очевидно, нужно найти . Поехали:

С синуса начинали, к синусу и пришли. Понятно, что при дальнейшем дифференцировании этот цикл будет продолжаться до бесконечности, и возникает следующий вопрос: как лучше «добраться» до восемнадцатой производной?

Способ «любительский»: быстренько записываем справа в столбик номера последующих производных:

Таким образом:

Но это работает, если порядок производной не слишком велик. Если же надо найти, скажем, сотую производную, то следует воспользоваться делимостью на 4. Сто делится на 4 без остатка, и легко видеть, что таковые числа располагаются в нижней строке, поэтому: .

Кстати, 18-ю производную тоже можно определить из аналогичных соображений:
во второй строке находятся числа, которые делятся на 4 с остатком 2.

Другой, более академичный метод основан на периодичности синуса и формулах приведения. Пользуемся готовой формулой «энной» производной синуса , в которую просто подставляется нужный номер. Например:
( формула приведения );
( формула приведения )

В нашем случае:

(1) Поскольку синус – это периодическая функция с периодом , то у аргумента можно безболезненно «открутить» 4 периода (т.е. ).

(2) Пользуемся формулой приведения .

С сотней, к слову, вообще всё элементарно – 25 «оборотов» прочь:

Заключительная, более лёгкая часть задания – это нахождение восемнадцатой производной в точке:


Ответ:

Производным высших порядков от произведения функций

Материал разберём на конкретной задаче:

Найти функции

Решение начнём с ключевого вопроса: как выгоднее всего найти третью производную от произведения функций?

…А почему бы, собственно, не взять три производные подряд? Тем более это представляется вполне подъёмной задачей. Используем правило дифференцирования произведения и упрощаем результат:

Со второй производной дела обстоят похуже, но всё-таки ещё не так плохи:

С третьей немножко повезло:

Всё выглядит весьма благонадёжно, но…

В чём недостаток такого решения? Во-первых, оно длинное. А ведь предложенная функция даже без «наворотов». И, во-вторых, тут легко запутаться (особенно в знаках). Рассмотрим простой и чёткий способ решения подобных заданий:

Формула Лейбница

Пожалуйста, не путайте с более известной формулой Ньютона-Лейбница!

Производную порядка от произведения двух функций можно найти по формуле:

В частности:

Примечание: здесь и далее предполагается дифференцируемость функций нужное количество раз

Специально запоминать ничего не надо, ибо, чем больше формул знаешь – тем меньше понимаешь. Гораздо полезнее ознакомиться с биномом Ньютона, поскольку формула Лейбница очень и очень на него похожа. Ну а те везунчики, которым достанется производная 7-го либо более высоких порядков (что, правда, маловероятно), будут вынуждены это сделать. Впрочем, когда черёд дойдёт до комбинаторики – то всё равно придётся


Найдём третью производную функции . Используем формулу Лейбница:

В данном случае: . Производные легко перещёлкать устно:

Теперь аккуратно и ВНИМАТЕЛЬНО выполняем подстановку и упрощаем результат:

Ответ:

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-10-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: