ЧЕЛНОКИ НОВОГО ПОКОЛЕНИЯ




 

С момента начала реализации программы Space Shuttle в мире неоднократно принимались попытки создания новых многоразовых кораблей. Проект «Гермес» начали разрабатывать во Франции в конце 1970-х годов, а потом продолжали в рамках Европейского космического агентства. Этот не большой космический самолет, сильно напоминавший разрабатываемый в России «Клипер», должен был выводиться на орбиту одноразовой ракетой «Ариан-5», доставляя к орбитальной станции несколько человек экипажа и до трех тон грузов. Несмотря на достаточно консервативную конструкцию, «Гермес» оказался Европе не по силам. В 1994 году проект, на который израсходовали около 2 миллиардов долларов был, был закрыт.

Куда более фантастично выглядел проект беспилотного воздушно-космического самолета с горизонтальными влетами и посадкой HOTOL (Horizontal Take-Off and Landing), (смотри приложение 11) предложенный в 1984 году фирмой British Aerospace. По замыслу, этот одноступенчатый крылатый аппарат предполагалось оснастить уникальной двигательной установкой, сжижающий в полете кислород из воздуха и использующий его в качестве окислителя. Горючим служит водород. Финансовые работы со стороны государства (три миллиона фунтов стерлингов) через три года прекратилось из-за необходимость огромных затрат на демонстрацию концепции необычного двигателя. Промежуточное положение между «революционным» HOTOL и консервативным «Гермесом» занимает проект воздушно-космической системы «Зенгер» (Sanger) (смотри приложение № 11), разработанный в середине 1980-х годов в ФРГ. Первой ступенью в нем служил гиперзвуковой самолет-разгонщик с комбинированными турбопрямоточными двигателями. После достижения 4 - 5 скоростей звука с его спины стартовали либо пилотируемый воздушно-космический самолет «Хорус», либо одноразовая грузовая ступень «Каргус». Однако и этот проект вышел из «бумажной» стадии, в основном по финансовым причинам.

Американский проект NASP был предоставлен президентом Рейганом в 1986 году как национальная программа воздушно-космического самолета. Этот одноступенчатый аппарат, который в прессе часто называли «Восточным экспрессом», имел фантастические летные характеристики. Их обеспечивали прямоточные воздушно-реактивные двигатели со сверхзвуковым горением, которые, по утверждению специалистов, могли работать при числах Маха от 6 до 25. Однако проект столкнулся с техническими проблемами, и в начале 90-х годов его закрыли.

Советский «Буран» подавался в отечественной (да и в зарубежной) печати как безусловный успех. Однако, совершив единственный беспилотный полет, 15 ноября 1988 года, этот корабль канул в Лету. Справедливости ради надо сказать, что «Буран» оказался, не менее совершенен, чем Space Shuttle. А в отношении безопасности и универсальности применения даже превосходил заокеанского конкурента. В отличие от американцев советские специалисты не питали иллюзий по поводу экономичности многоразовой системы - расчеты показывали, что одноразовая ракета эффективнее. Но при создании «Бурана» основным был иной аспект - советский челнок разрабатывался как военно-космическая система. С окончанием «холодной войны» этот аспект отошел на второй план, чего не скажешь про экономическую целесообразность. А с ней у «Бурана» было плохо: его пуск обходился, как одновременный старт пары сотен носителей «Союз». Судьба «Бурана» была решена.

ЗА И ПРОТИВ

Не смотря на то, что новые программы разработки многоразовых кораблей появляются как грибы после дождя, до сих пор не одна из них не принесла успеха. Ничем окончились упомянутые выше проекты Hermes (Франция, EKA), HOTOL (Великобритания) и Sanger (ФРГ). «Завис» между эпохой МАКС - советско-российская многоразовая авиационно-космическая система. Потерпели неудачу и программы NASP (национальный аэрокосмический самолет) и RLV (многоразовая ракета-носитель) - очередные попутки США создать МТКС второго поколения на замену Space Shuttle. В чем же причина такого не завидного постоянства?

По сравнению с одноразовой ракетой-носителем создание «классической» многоразовой транспортной системой обходится крайне дорого. Сами по себе технические проблемы многоразовых систем решаемы, но стоимость их решений очень велика. Повышение кратности использования требует порой весьма значительного увеличения массы, что ведет к повышению стоимости. Для компенсации роста массы берутся (а зачастую изобретаются с нуля) сверхлегкие и сверхпрочные (и более дорогие) конструкционные и теплозащитные материалы, а так же двигатели с уникальными параметрами. А применение многоразовых систем в области мало изученных гиперзвуковых скоростей требует значительных затрат на аэродинамические исследования.

И все же это вовсе не значит, что многоразовые системы в принципе не могут окупаться. Положение меняется при большом количестве пусков. Допустим, стоимость разработки системы составляет 10 миллиардов долларов. Тогда, при 10 полетах (без затрат на межполётное обслуживание), на один запуск будет отнесена стоимость разработки в один миллиард долларов, а при 1000 полетов - только 10 миллионов! Однако из-за общего сокращения «космической активности человека» о таком числе пусков остается только мечтать. Значит, на многоразовых системах можно поставить крест? Я так не думаю.

Во-первых, не исключен рост «космической активности цивилизации». Определенные надежды дают новый рынок космического туризма. Возможно, на первых порах, окажутся востребованными корабли малой и средней размерности «комбинированного» типа (многоразовые версии «классических» одноразовых), такие как европейские «Гермес» или, что нам ближе, российский «Клипер». Они относительно просты, могут выводиться в космос обычными (в том числе, возможно, уже имеющимися) одноразовыми ракетоносителями. Да, такая схема не сокращает затраты на доставку грузов в космос, но позволяет сократить расходы на миссию в целом (в том числе снять с промышленности бремя серийного производства кораблей). К тому же крылатые аппараты позволяют резко уменьшить перегрузки, действующие на космонавтов при спуске, что является несомненным достоинством.

Во-вторых, что особенно важно для России, применение многоразовых крылатых ступеней позволяет сократить затраты на зоны, выделяемые под поля падения фрагментов ракет-носителей.

 

ВАРИАНТЫКОНСТРУКТИВНОЙ РЕАЛИЗАЦИИ МНОГОРАЗОВЫХ СИСТЕМ

 

Варианты конструктивной реализации многоразовых систем весьма разнообразны. При их обсуждении не стоит ограничиваться только кораблями, надо сказать и о многоразовых носителях - грузовых многоразовых транспортных космических системах (МТКС). Очевидно, что для снижения стоимости разработки МТКС надо создавать беспилотными и не перегружать их избыточными, как у Шаттла, функциями. Это позволит существенно упростить и облегчить конструкцию.

С точки зрения простоты эксплуатации наиболее привлекательны одноступенчатые системы: теоретически они значительно надежнее многоступенчатых, но их реализация находится «на гране возможного»: для создания таковых требуется снизить относительную массу конструкций не менее чем на треть по сравнению с современными системами. Впрочем, и двухступенчатые многоразовые системы могут обладать вполне приемлемыми эксплуатационными характеристиками, если использовать крылатые первые ступени, возвращаемые к месту старта по-самолетному.

Вообще МТКС в первом приближении можно классифицировать по способам старта и посадки: горизонтальному и вертикальному. Часто думают, что системы с горизонтальным стартом имеют преимущество, поскольку не требуют сложных пусковых сооружений. Однако современные аэродромы не способны принимать аппараты массой более 600-700 тонн, и это существенно ограничивает возможности систем с горизонтальным стартом. Кроме того, трудно представить себе космическую систему, заправленную сотнями тонн криогенных компонентов топлива, среди гражданских аэролайнеров, взлетающих и садящихся на аэродром по расписанию. А если учесть пребывания к уровню шума, то становится очевидным, что для носителей с горизонтальным стартом все равно придется строить отдельные высококлассные аэродромы. Так что у горизонтального взлета здесь существенных преимуществ перед вертикальным стартом нет. Зато, взлетая и садясь вертикально, можно отказаться от крыльев, что существенно облегчает и удешевляет конструкцию, но вместе с тем затрудняет точный заход на посадку и ведет к росту перегрузок при спуске.

В качестве двигательных установок МТКС рассматриваются как традиционные жидкостные ракетные двигатели (ЖРД), так и различные варианты и комбинации воздушно-реактивных (ВРД). Среди последних есть турбопрямоточные, ракетно-прямоточные, способные функционировать во всем диапазоне скоростей полета - от нулевых до орбитальных.

Воздушно-реактивные двигатели на порядок экономичнее ракетных (из-за отсутствия окислителя на борту аппарата), но при этом имеют и на порядок большую удельную массу, а так же весьма серьезные ограничения на скорость и высоту полета. Для рационального использования ВРД требуется совершать полет при больших скоростных напорах, защищая при этом конструкцию от аэродинамических нагрузок и перегревов. То есть, экономя топливо ВРД увеличивают массу конструкции, которая обходится гораздо дороже. Тем не менее, ВРД, вероятно, найдут применение в относительно не больших многоразовых аппаратах горизонтального старта.

Наиболее реалистичными, то есть простыми и относительно дешевыми в разработке, пожалуй, являются два вида систем. Первый - типа уже упомянутого «Клипера», в которых принципиально новым оказался только пилотируемый крылатый многоразовый аппарат. Но большие размеры хоть и создают определенные трудности в части теплозащиты, зато уменьшают затраты на разработку. Технические проблемы для таких аппаратов практически решены. Так что «Клипер» - это шаг в правильном направлении.

Второй - система вертикального пуска с двумя крылатыми ракетными ступенями, которые могут самостоятельно вернуться к месту старта. Особых технических проблем при их создании не ожидается, да и проходящий стартовый комплекс можно, наверное, подобрать из числа уже построенных.

Подводя итог, я думаю, что будущее многоразовых космических систем безоблачным не будет. Им придется отстаивать право на существование в суровой борьбе с примитивными, но надежными и дешевыми одноразовыми ракетами.


 

ГИПЕРЗВУКОВЫЕ ДВИГАТЕЛИ

 

Наиболее перспективным типам двигательных установок для многоразовых воздушно-космических самолетов с горизонтальным взлетом некоторые специалисты считают гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД), или, как их чаще называют, прямоточные воздушно-реактивные двигатели со сверхзвуковым горением. Схема двигателя крайне проста - у него нет ни компрессора, ни турбины. Поток воздуха сжимается поверхностью аппарата, а так же в специальном воздухозаборнике. Как правило, единственной подвижной частью двигателя является насос подачи горючего.

Основная особенность ГПВРД в том, что при скоростях полета, шесть и более раз превышающих скорость звука, поток воздуха не успевает затормозиться во впускном тракте до дозвуковой скорости, и горение должно происходить в сверхзвуковом потоке. А это представляет известные сложности - обычно топливо не успевает сгорать в таких условиях. Долгое время считалось, что единственное горючее, пригодное для ГПВРД - водород. Правда, в последнее время получены обнадеживающие результаты и с горючим типа керосина.

Не смотря на то, что гиперзвуковые двигатели исследуются с середины 1950-х годов, до сих пор не изготовлено ни одного полноразмерного летного образца: сложность расчетов газодинамических процессов при гиперзвуковых скоростях требуют проведение дорогостоящих натурных летных экспериментом. Кроме того, нужны жаропрочные материалы, стойкие к окислению при больших скоростях, а так же оптимизированная система топливоподачи и охлаждения ГПВРД в полете.

Существенные недостаток гиперзвуковых двигателей - они не могут работать со старта, аппарат до сверхзвуковых скоростей надо разгонять другими, например, обычными турбореактивными двигателями. И, конечно, ГПВРД работает только в атмосфере, так сто для выхода на орбиту понадобится ракетный двигатель. Необходимость ставить несколько двигателей на один аппарат значительно усложняет конструкцию воздушно-космического самолета.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: