Лекция 8 Теплопередача через стенки, интенсификация процессов теплопередачи, тепловая изоляция




Проблема отвода тепла. Тепловое сопротивление. Способы уменьшения теплового сопротивления

Силовые полупроводниковые приборы и силовые интегральные микросхемы (ИМС) рассеивают сравнительно большую мощность. Поэтому одной из важнейших задач разработчика силового прибора является поиск и реализация соответствующего технического решения, обеспечивающего эффективный отвод избыточной тепловой энергии от активной структуры полупроводникового кристалла. Все современные мощные силовые полупроводниковые устройства выпускаются в корпусах, обеспечивающих эффективный тепловой контакт между их металлической поверхностью и специально для этих целей предназначенным внешним радиатором. Во многих случаях эта металлическая поверхность силового устройства электрически связана с одним из выводов устройства (например, у мощного п-р-п-транзистора она связана с его коллектором, у ИМС стабилизатора напряжения — с отрицательным выводом источника питания).

С целью обеспечения надежной работы силовых полупроводниковых приборов и силовых ИМС в радиоэлектронной аппаратуре в нормативно-технической документации на эти изделия обычно установлены ограничения на предельно-допустимые температуры кристалла. Для кремниевых силовых приборов это плюс 150 °С.

Обычно такие теплоотводы (радиаторы) используются с приборами, которые специально приспособлены для работы с радиаторами.

Основными способами уменьшения величины теплового сопротивления силовых полупроводниковых приборов являются:

— применение радиатора;

— применение принудительного охлаждения (воздушного — радиаторами, жидкостного);

—применение методов дополнительного теплоотвода непосредственно через кристаллодержатель или через выводы силового прибора.

 

 


 

Расчет радиатора

Во время работы полупроводникового прибора в его кристалле выделяется мощность, которая приводит к разогреву последнего. Если тепла выделяется больше, чем рассеивается в окружающем пространстве, то температура кристалла будет расти и может превысить максимально допустимую. При этом его структура будет необратимо разрушена.

Следовательно, надежность работы полупроводниковых приборов во многом определяется эффективностью их охлаждения. Наиболее эффективным является конвективный механизм охлаждения, при котором тепло уносит поток газообразного или жидкого теплоносителя, омывающего охлаждаемую поверхность.

Чем больше охлаждаемая поверхность, тем эффективнее охлаждение, и поэтому мощные полупроводниковые приборы нужно устанавливать на металлические радиаторы, имеющие развитую охлаждаемую поверхность. В качестве теплоносителя обычно используется окружающий воздух.

По способу перемещения теплоносителя различают:

o естественную вентиляцию;

o принудительную вентиляцию.

В случае естественной вентиляции перемещение теплоносителя осуществляется за счет тяги, возникающей возле нагретого радиатора. В случае принудительной вентиляции перемещение теплоносителя осуществляется с помощью вентилятора. Во втором случае можно получить большие скорости потока и, соответственно, лучшие условия охлаждения.

Тепловые расчеты можно сильно упростить, если использовать тепловую модель охлаждения (рис. 18.26) Здесь разница между температурой кристалла TК и температурой среды ТС вызывает тепловой поток, движущийся от кристалла к окружающей среде, через тепловые сопротивления RКК (кристалл - корпус), RКР (корпус - радиатор) и RРС (радиатор - окружающая среда).

Рис 18.26. Тепловая модель охлаждения

Тепловое сопротивление имеет размерность °С/Вт. Суммарное максимальное тепловое сопротивление RКС на участке кристалл - окружающая среда можно найти по формуле:

где РПП - мощность, рассеиваемая на кристалле полупроводникового прибора, Вт.

Тепловое сопротивление RКК и RКР указывается в справочных данных на полупроводниковые приборы. Например, согласно справочным данным, на транзистор IRFP250N, его тепловое сопротивление на участке кристалл- радиатор равно RJC + RCS = 0,7 + 0,24 = 0,94 °С/ Вт.

Это означает, что если на кристалле выделяется мощность 10 Вт, то его температура будет на 9,4 °С больше температуры радиатора.

Тепловое сопротивление радиатора можно найти по формуле:

Предлагаемая ниже методика основана на рекомендациях по выбору алюминиевых радиаторов серии Max Clip System™ фирмы "AAVID THERMALLOY".

На рис. 18.27 приводятся графические зависимости между периметром сечения алюминиевого радиатора и его тепловым сопротивлением для естественного (красная линия) и принудительного (синяя линия) охлаждения воздушным потоком.

По умолчанию считается, что:

o радиатор имеет длину 150 мм;

o разница между температурой радиатора TS и температурой окружающей среды Та равна ;

o скорость потока принудительного охлаждения равна 2 м/с.

Если условия охлаждения отличаются от принятых по умолчанию, то необходимую поправку можно внести, воспользовавшись графиками на рис. 18.28 - рис. 18.30.

 

Рис. 18.27. Зависимости между сечением алюминиевого радиатора и его тепловым сопротивлением

Рис. 18.28. Поправочный коэффициент на разницу температуры радиатора и окружающей среды

Рис. 18.29. Поправочный коэффициент на скорость воздушного потока

Рис. 18.30. Поправочный коэффициент на длину радиатора

Для примера рассчитаем радиатор, обеспечивающий охлаждение транзистора ЭРСТ, состоящего из 20-ти транзисторов типа IRFP250N. Расчет радиатора можно вести для одного транзистора, а затем полученный размер увеличить в 20 раз.

Так как на ключевом транзисторе рассеивается суммарная мощность 528 Вт, то на каждом транзисторе IRFP250N рассеивается мощность 528/20 = 26,4 Вт. Радиатор должен обеспечивать максимальную температуру кристалла транзистора не более +110 °С при максимальной температуре окружающей среды +40 °С.

Найдем тепловое сопротивление RJA для одного транзистора IRFP250N:

Теперь найдем тепловое сопротивление радиатора:

Зная максимальную температуру кристалла и тепловое сопротивление на участке кристалл-радиатор, определим максимальную температуру радиатора:

По графику (рис. 18.28) определим поправочный коэффициент Кт на разницу температуры радиатора и окружающей среды:

КТ=1,19

Для охлаждения радиатора используется вентилятор типа 1,25ЭВ-2,8-6-3270У4, имеющий производительность 280 м3/ч. Чтобы вычислить скорость потока, нужно разделить производительность на сечение воздуховода, продуваемого вентилятором.

Если воздуховод имеет площадь поперечного сечения:

то скорость воздушного потока будет равна:

По графику (рис. 18.29) определим поправочный коэффициент Kv на реальную скорость воздушного потока:

Допустим, что в нашем распоряжении имеется большое количество готовых радиаторов, имеющих периметр сечения 1050 мм и длину 80 мм. По графику (рис. 18.30) определим поправочный коэффициент KL на длину радиатора:

Чтобы найти общую поправку, перемножим все поправочные коэффициенты:

С учетом поправок, радиатор должен обеспечивать тепловое сопротивление:

С помощью графика (рис. 18.27) найдем, что для одного транзистора требуется радиатор с периметром сечения 200 мм. Для группы из 20-ти транзисторов IRFP250N радиатор должен иметь периметр сечения не менее 4000 мм. Так как имеющиеся в распоряжении радиаторы имеют периметр 1050 мм, то придется объединить 4 радиатора.

На диоде ЭРСТ рассеивается меньшая мощность, но из конструктивных соображений для него можно использовать аналогичный радиатор.

Зачастую производители охладителей указывают площадь поверхности радиатора, а не периметр и длину.

Чтобы из предлагаемой методики получить площадь радиатора, достаточно умножить длину радиатора на его периметр SP = 400 • 8 = 3200 см2.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: