Уплотняемость - это способность смеси уменьшать свой первоначальный объем под воздействием внешних сил. Уплотняемость песчано-глинистых смесей зависит от содержания воды и глины и от их соотношения. Оценку уплотняемости производят по разнице объемов навески смеси до и после уплотнения, отнесенной к первоначальному ее объему, и выражают в процентах. Уплотняемость определяют по ГОСТ 23409.13-78.
Текучесть - это способность смеси под воздействием внешних сил заполнять труднодоступные полости в модельной оснастке, обеспечивая равномерное уплотнение формы или стержня. Значение текучести тесно связано с величиной прочности смеси во влажном состоянии, при этом чем меньше эта величина, тем выше текучесть смеси во влажном состоянии. Для оценки текучести песчано-глинистых смесей используют методику (ГОСТ 23409.17-78), основанную на замере твердости торцевых поверхностей уплотненного цилиндрического образца (рис. 1.6) в точках а и б.
![]() |
Величину текучести смеси выражают в процентах и подсчитывают по формуле
Т = Нн/Нв*100
где Нн и Нв — твердость нижнего и верхнего торца образца, условные единицы.
![]() |
Прилипаемостъ - это способность смеси во влажном состоянии прилипать к поверхности модельной оснастки или транспортных средств
(ленточных конвейеров). Повышенная прилипаемость смесей увеличивает шероховатость поверхности формы или стержня, а также вызывает необходимость частой чистки поверхности модельной оснастки и транспортных средств. Оценку прилипаемости смеси производят на специальном приборе (рис. 1.7) по величине усилия отрыва, отнесенного к контактной поверхности образца и конического цилиндра.
Расчет прилипаемости смеси производят по формуле
ПР = P/S.
где Р - усилие отрыва образца, Н; S - контактная поверхность образца, м2.
Гигроскопичность характеризует способность формы или стержня впитывать влагу из окружающей среды. Оценка гигроскопичности основана на определении массы влаги, поглощенной сухой смесью. (ГОСТ 23409.10-78). Стандартный образец смеси диаметром и высотой 50 мм сушат и взвешивают, помещают в эксикатор на фильтровальную бумагу, помещенную на влажный песок, и выдерживают в течение 2 ч, после чего снова взвешивают.
Испытание проводят на трех образцах. Гигроскопичность (X) в процентах вычисляют по формуле
X=(М1-М2)/М1*100
где М1 М2 - масса образца до и после сушки.
Значение гигроскопичности связано с природой и количеством связующего материала смеси.
Например, водорастворимые связующие материалы (лигносульфонаты, декстрин, патока и др.) придают смеси высокую гигроскопичность. Смеси с водонерастворимыми связующими материалами имеют низкую гигроскопичность.
Живучесть - это продолжительность сохранения смесью своих физико-механических свойств. Значение ее зависит от природы связующего материала смеси, а также от интенсивности уменьшения в ней влаги. Например, смеси с высокомодульным жидким стеклом обладают малой живучестью. Для ее повышения в состав смесей вводят добавку водного раствора едкой щелочи, которая снижает модуль жидкого стекла. За показатель живучести холоднотвердеющих (упрочняющихся без теплового воздействия) смесей обычно применяют продолжительность промежутка времени (в минутах), по прошествии которого значение ее прочности снижается на 30% от максимального.
Осыпаемость характеризуется способностью поверхности формы или стержня не разрушаться при транспортировании, сборке и заливке формы. Значение осыпаемости связано с количеством и природой связующего материала, а также с режимом сушки форм и стержней. Для уменьшения осыпаемости песчано-глинистых форм в состав смеси обычно вводят добавки лигносульфонатов. В соответствии с ГОСТ 23409.9-78 оценку осыпаемости смеси производят по величине потери массы стандартным образцом, помещенным во вращающийся сетчатый барабан, при этом величину осыпаемости выражают в процентах и рассчитывают по формуле
О=(М0-М1)/М0*100
где М0 и M1 - масса образца до и после испытания, г.
Податливость - это способность формы или стержня деформироваться под воздействием усадки отливок. Степень податливости смеси зависит от природы огнеупорной основы, от количества и природы связующего материала, а также от степени уплотнения смеси. Например, сильно уплотненные смеси с большим количеством глины малоподатливы. Для улучшения податливости в состав вводят древесные опилки и другие добавки.
Огнеупорность характеризует способность смеси не оплавляться под действием высоких температур. При недостаточной огнеупорности смеси происходит оплавление и спекание отдельных ее компонентов с образованием крупных пор, приводящих к формированию повышенного пригара на отливках. Значение огнеупорности смеси зависит от минералогического, гранулометрического и химического состава формовочного песка и глины. В соответствии с ГОСТ 4069-69 для оценки огнеупорности из смеси изготавливают образцы в виде трехгранных пирамидок. Величину огнеупорности смеси определяют по температуре, при которой вершина образца в процессе размягчения и оплавления смеси коснется уровня его основания.
Пригораемостъ - это способность поверхностного слоя формы или стержня противостоять прочному сцеплению с металлом отливки. Степень пригораемости смеси зависит от многих факторов, в том числе от пористости смеси, химической инертности ее огнеупорной основы. Уменьшения пригораемости смеси достигают введением в ее состав противопригарных и высокоогнеупорных материалов (каменный уголь, мазут, маршалит и др.), применением специальных защитных покрытий, наносимых на поверхность форм и стержней.
Выбиеаемость характеризуется способностью стержней удаляться из внутренних полостей при выбивке и очистке отливок. Значение выбиваемости зависит главным образом от природы и количества связующего материала в смеси, от интенсивности температурного и силового воздействия металла отливок на стержень. Смеси с неорганическими связующими материалами, например, с жидким стеклом, имеют затрудненную выбиваемость вследствие их прочного спекания в период затвердевания отливки в форме. Хорошую выбиваемость имеют смеси с органическими, легковыгорающими и некок- сующимися связующими материалами. Оценку выбиваемости смеси производят по величине работы, затрачиваемой на пробивку специальным бойком стержня, залитого сплавом. Работу выбивки определяют по формуле
А = п G h,
где п - число ударов, необходимое для пробивки стержня;
G - масса падающего груза, кг;
h - высота падения груза, м.
Долговечность характеризует способность смеси, после соответствующей подготовки, повторно использоваться для изготовления форм без введения добавок свежих формовочных материалов. Долговечность смеси зависит от интенсивности температурного воздействия жидкого сплава, от природы огнеупорной основы и связующего материала смеси. Наибольшей долговечностью обладают песчано-глинистые смеси. Оценку долговечности смеси производят по числу циклов ее использования, обеспечивающему сохранение смесью физико-химических свойств и получение качественных отливок.
1.4. Теплофизические свойства
К теплофизическим свойствам относятся теплоемкость, теплопроводность, температуропроводимость и теплоаккумулирующая способность. Эти характеристики определяют тепловой режим охлаждения отливки в форме. Значения их зависят главным образом от природы огнеупорной основы смесей, а также и от состояния формы (влажная, сухая). Наиболее высокими теплофизическими свойствами обладают цирконовые, дистен-силлиманитовые, хромитовые формовочные пески. Теплофизические характеристики кварцевых песков значительно ниже.
Различные теплофизические свойства смесей позволяют регулировать процессы затвердевания отдельных частей отливок. Значение теплоемкости и теплопроводности смесей определяется в специальных теплофизических лабораториях, а температуропроводность и теплоаккумулирующая способность - расчетным путем.
Теплопроводность вещества l определяется как количество теплоты Q, которое подводится за время t через поверхность площадью F, расположенную перпендикулярно к тепловому потоку, отнесенное к температурному градиенту Dt/d (Dt - разность температур; d - толщина образца):
l=Q/(Ft Dt/d)
'
Теплопроводность большинства формовочных смесей с повышением температуры увеличивается, а у смесей с магнезитом и корундом, в качестве наполнителя, уменьшается. Получение заданной теплопроводности в песчаных формах затруднительно, так как она зависит не только от теплопроводности наполнителя, но и от влажности воздуха и газов, находящихся в межзерновых порах.
В сухом песке предположительно теплопередача происходит от зерна к зерну за счет прямых контактов, частично - излучением. Теплопроводность при повышении температуры на 1000°С (с 95 до 1095°С) изменяется почти на 100% - с 2,63-10-6 до 4,75-10-6 Вт/(м*К).
Процесс распространения теплоты во влажном песке, однако, более сложен, чем в сухом. Теплопередача происходит как за счет теплопроводности зерен наполнителя, так и воды (водяного пара), адсорбированной зернами песка и находящейся в порах между песчинками.
При нагреве влажной формовочной смеси залитым металлом в глубь формы проникает водяной пар (в результате изменения давления), нагретый в порах воздух, а также продукты сгорания органических составляющих. В холодных слоях формы, удаленных от отливки, происходит конденсация влаги. В результате переноса теплоты водяным паром и улучшения условий теплопередачи между контактирующими зернами песка из-за накопления влаги в местах их контакта общая теплопроводность смеси с повышением влажности также повышается.
На теплопроводность песчано-глинистых форм влияют степень уплотнения формовочной смеси и содержание связующего. Например, теплопроводность повышается при увеличении степени уплотнения и количества бентонина в смеси.
Удельная теплоемкость формовочной смеси зависит не только от ее вида, но и от температуры. С повышением температуры она также увеличивается. Значительное влияние на удельную теплоемкость формовочной смеси оказывает содержание в ней влаги. Для более полного представления о теплофизических свойствах форм определяют температуропроводность а (в м2с-1), характеризующую, насколько интенсивно в форме выравниваются температурные перепады:
а = l(с * р),
где с - удельная теплоемкость смеси, Дж/(кг*К);
р - плотность смеси, кг/м3.
Температуропроводность в интервале температур 500-1000°С кварцевого песка составляет 0,00145 м2с-1, шамота - 0,00178 м2с-1
![]() |
При расчете теплопередачи от отливки к форме применяется также величина, называемая коэффициентом тепловой аккумуляции
Чем выше теплоаккумуляторная способность формы, тем быстрее охлаждается отливка и меньше опасность образования пригара на поверхности отливки.