Поперечная сила и изгибающий момент




Лекция №3

Тема: «Внутренние усилия в поперечных сечениях стержня»

Вопросы:

Опоры и опорные реакции, и их определение

Поперечная сила и изгибающий момент

Взаимосвязь между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки

Опоры и опорные реакции, и их определение

При расчете конструкций в основном встречаются элементы, испытывающие изгиб. Стержни, работающие преимущественно на изгиб, называют балками. Для того чтобы балка могла испытывать нагрузку и передавать ее на основание, она должна быть соединена с ним опорными связями. На практике применяют несколько типов опорных связей, или, как говорят, несколько типов опор.

Различают три основных типа опор:

а) шарнирно-подвижная опора:

б) шарнирно-неподвижная опора:

в) жесткая заделка.

Рис. 1

 

На рис. 1 показана шарнирно-подвижная опора, такая опора позволяет балке свободно поворачиваться и перемещаться в горизонтальном направлении. Поэтому реакция в опоре будет одна - вертикальная сила. Условное обозначение такой опоры показано справа.

Рис. 2

 

На рис. 2 показана шарнирно-неподвижная опора. Такая опора позволяет балке свободно поворачиваться, но перемещаться она не может. Поэтому могут возникать две реакции - вертикальная и горизонтальная силы. Их можно сложить и получить одну результатирующую силу, но нужно знать угол, под которым oна будет направлена. Более удобно будет пользоваться вертикальной и горизонтальной составляющими реакции.

На рис. 3 показана жесткая заделка. Она не позволяет балке ни поворачиваться, ни перемещаться. Поэтому могут возникать три опорные реакции: момент, вертикальная и горизонтальная силы. Если балка не имеет на конце опоры, то эта часть ее называется консолью.

Рис. 3

Определим реакции опор для балки (см. рис. 4).

Рис.4

В опоре А горизонтальная реакция равна нулю, так как распределенная нагрузка q и сосредоточенная сила F имеют вертикальное направление. Реакции опор направим вверх. Составим два уравнения статического равновесия сил. Сумма моментов относительно каждой из опор равна нулю. Уравнения моментов нужно составлять относительно опор, так как в этом случае получаются уравнения с одним неизвестным. Если составить уравнения относительно точек В и С, то получим уравнения с двумя неизвестными, а их решать сложнее. Моменты против часовой стрелки будем считать положительными, по часовой - отрицательными.

где - момент от равномерно распределенной нагрузки.

Произведение q на расстояние, на котором она приложена, из условия равновесия системы равно сосредоточенной силе, приложенной посредине отрезка. Поэтому момент равен:

– момент силы F

Внешний момент m на плечо не умножается, так какэто пара сил, т.е. две равные по величине, противоположно направленные силы, имеющие постоянное плечо.

или

.

Проверка: Сумма всех сил на вертикальную ось Y должна быть равна нулю:

.

Момент m в условие статического равновесия не записывают, так как момент - это две равные по величине, противоположно направленные силы и в проекции на любую ось они дадут ноль.

30-20-2-40+50=0:

80-80=0.

Реакции определены правильно.

Поперечная сила и изгибающий момент

Пусть на балку действуют силы , реакции опор . Определим внутренние усилия в сечении, расположенном на расстоянии от нулевого конца (см. рис.5).

Рис. 5

Поскольку все внешние силы действуют вертикально, то горизонтальной составляющей у реакции опоры А не будет. Балка не будет сжиматься или растягиваться, т.е. продольная сила в поперечных сечениях равна нулю. Можно было взять пример, когда силы были бы не вертикальными по направлению. Тогда бы в опоре А была бы и вторая реакция - горизонтальная сила, а в сечениях балки - продольная сила N. В этом случае балка испытывала бы изгиб с растяжением (сжатием), т.e. был бы случай сложного сопротивления. Его мы будем изучать позднее. Вначале рассматривают более простые задачи и идут к более сложным, а не наоборот.

Поскольку внешние силы лежат в одной плоскости, проходящей через ось бруса, то возможно возникновение тpex внутренних усилий: изгибающею момента М, поперечной силы Q и продольной силы N, которая, как мы отмечали, равна нулю. Значения М и Q определим из уравнения статического равновесия левой части балки:

.

Вывод: поперечная сила в сечении численно равна алгебраической сумме всех внешних сил, а изгибающий момент - сумме всех моментов, вычисленных относительно сечения и приложенных к рассматриваемой части балки.

Для поперечных сил и изгибающих моментов приняты обязательные правила знаков (см. рис. 6).

Если сила пытается повернуть рассматриваемую часть балки по часовой стрелке, то она вызывает положительную поперечную силу, и, наоборот, если действует против часовой стрелки - то поперечная сила отрицательная. На рис. 5 сила вызывает положительное Q, а - отрицательное. Следует отметить, что направление силы положительное для левой части будет отрицательным для правой части. Это вызвано тем, что внутренние силы, действующие на правую и левую часть балки обязательно должны быть равны и противоположно направлены.

Если внешняя сила или внешний момент изгибают балку выпуклостью вниз, то возникающий изгибающий момент положительный и, наоборот, выпуклостью вверх - отрицательный.

Рис. 6



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: