Условие остойчивости судна




Основные действия при принятии ходовой машинной вахты в машинно-котельном отделении

Вахтенный моторист (машинист)

 

192. Вахтенный моторист (машинист) подчиняется вахтенному механику. Он обязан: получить от сдающего вахту сведения о заданном режиме работы технических средств, неисправностях и распоряжениях по вахте; проверить исправность технических средств; доложить о приеме вахты; находиться на своем посту и обеспечивать бесперебойную работу механизмов; докладывать о неисправностях и неполадках; поддерживать порядок в машинном отделении.

 

Вахтенный котельный машинист

 

193. Вахтенный котельный машинист подчиняется вахтенному механику. Он обязан: получить от сдающего сведения о заданном режиме работы котельной установки, неисправностях и распоряжениях по вахте; проверить исправность механизмов и средств автоматизации; доложить о приеме вахты; находиться на посту управления котельной установкой и обеспечивать ее бесперебойную работу (включая средства автоматизации); докладывать о неисправностях и неполадках; поддерживать порядок в котельном отделении; при угрозе аварии или безопасности людей остановить работу котельной установки и немедленно доложить вахтенному механику.

Условие остойчивости судна


Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В1Л1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С1.
Сила поддержания D', оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m.
Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В1Л1. Таким образом, силы Р и D', параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания.
Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары - восстанавливающим моментом Mθ.
Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также положительна — судно остойчиво. На рис. 1 показано расположение сил, действующих на судно, которое соответствует положительному восстанавливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.

Нa рис. 2 показан противоположный случай, когда восстанавливающий момент отрицателен (ц.т. лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т.к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр. В этом случае судно неостойчиво.
Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т.е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 3.

Отсутствие восстанавливающего момента приводт к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении т.е. судно находится в безразличном равновесии.
Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис 1), то судно остойчиво;
Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис.2, 3) судно неостойчиво.
Отсюда возникает понятие метацентрической высоты: поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия.
Поперечная мегацентрическая высота (рис. 1) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т.е. отрезком mG. Этот отрезок является постоянной величиной, т.к. и Ц.Т.,и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна.
Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: Судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т.е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 4, на котором показано относительное расположение центра величины С, центра тяжести G и поперечного метацентра m судна, имеющего положительную начальную поперечную остойчивость. Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:h = r ± a; h = ZC + r - ZG; h = Zm - ZG.

 

2.1. Система водяного пожаротушения – основная система для защиты оборудуемая независимо от наличия других систем. Система трубопроводов состоит из основной магистрали с диаметром труб 100-150 мм и ответвлений диаметром 38-64 мм. Все участки водопожарной магистрали, проходящие по открытым палубам, должны иметь спускные краны для осушения магистрали на случай опасного понижения температуры.

Водяная противопожарная система (ВППС предназначена для:

  • обеспечения забортной водой высокого давления потребителей комплекса систем борьбы за живучесть (БЗЖ) - систем орошения и водораспыления, системы защиты вахт и сходов;
  • обеспечения забортной водой высокого давления в качестве рабочей воды эжекторов системы осушения трюмов;
  • обеспечения забортной водой системы "забортной воды", предназначенной для обслуживания мытьевой системы при санобработке л/с и обслуживание смыва в гальюнах.

ВППС выполнена по кольцевой схеме (см. рисунок) с семью боевыми перемычками и состоит из:

 

Рисунок 1 – Схема водяной противопожарной системы

 

  • трех турбонасосов ТПЖН-150/10 производительностью 150 куб.м/час и напором 10 м.вод.ст, расположенных в носовом машинно-котельном отделении (МКО), помещении вспомогательного котла (ПВК) и кормовом МКО и служащих для подачи забортной воды в боевые перемычки № 3, 4 и 5;
  • четырех электронасосов НЦВ-160/80 производительностью 160 куб.м/час и напором 80 м.вод.ст, расположенных попарно в насосных отделениях № 1 и 2 и служащих для подачи забортной воды в боевые перемычки № 1,2,6 и 7;
  • семи боевых перемычек, к каждой из которых подключен один пожарный насос. Отбор воды на потребители, указанные выше производится ТОЛЬКО от перемычек;
  • восемнадцати главных разобщительных клапанов с дистанционным управлением из поста энергетики и живучести (ПЭЖ) с помощью электропривода, служащих для разобщения ВППС в боевом режиме и переключения участков ВППС для подачи воды в другие перемычки при выходе из строя каких-либо насосов или участков системы. Эти клапаны помечены на схеме восклицательным знаком;
  • системы дистанционного контроля и управления, состоящей из местных контрольных манометров, расположенных у насосов, дистанционных манометров, расположенных на мнемосхеме в ПЭЖ и запасном ПЭЖ (ПДУ КМКО), а также датчиков давления, подключенных к каждой перемычке и служащих для автоматического запуска дежурного электропожарного насоса при падении давления в ВППС до 6 кГс/кв.см в повседневном режиме. Кроме того, в систему дистанционного контроля и управления входит пускорегулирующая аппаратура электропожарных насосов.

ВППС работает в двух режимах:

  • боевой режим - в этом режиме все главные разобщительные клапаны ЗАКРЫТЫи работают ВСЕ семь насосов. При этом обеспечивается автономное питание перемычек с их потребителями. При выходе из строя насоса, обслуживающего перемычку и исправном состоянии любой бортовой ветви "кольца" с помощью переключения соответствующих клапанов нерабочая перемычка подключается к работающим.
  • повседневный режим - в этом режиме на стоянке работает ТПЖН № 2, на ходу - ТПЖН № 1 и 3. Все электронасосы, не находящиеся в планово-предупредительном осмотре или ремонте (ППО и ППР) находятся в дежурстве - готовности к автоматическому запуску при падении давления в ВППС до 6 кГс/кв.см.

Нормальное значение давления в ВППС составляет 7-8 кГс/кв.см.

В целом данное конструктивное исполнение ВППС считается классическим и наиболее надежным даже по сравнению с исполнением аналогичной системы на кораблях более поздних проектов. Наиболее сильными сторонами такого решения являются:

  • очень короткие боевые перемычки, расположенные поперек корпуса корабля (минимизирован объем потенциального критического повреждения);
  • наличие трех турбопожарных насосов. Исходя из концепции обеспечения работоспособности паросиловой энергетической установки (ПСУ) при отсутствии электроэнергии на корабле (полное самообеспечение), подача воды в ВППС так же будет происходить несмотря на отсутствие электроэнергии.

Слабым местом конструктивного решения является низкое расположение боевых перемычек и бортовых ветвей "кольца", т.е боевые перемычки вместе с отводами к потребителям попадают в поражаемый объем при подводных взрывах. При расположении перемычек вблизи или на уровне палубы непотопляемости (нижней палубы) этот недостаток мог бы быть изжит.

 

2.2. Трубы гнут ручным и механизированным способами; в горячем и холодном состоянии; с наполнителями и без наполнителей. Способ гибки зависит от диаметра трубы, величины угла загиба и материала труб.

Гибка труб в горячем состоянии применяется при диаметре более 100 мм. При горячей гибке с наполнителем трубу отжигают, размечают, а затем один конец закрывают деревянной или металлической пробкой. Для предупреждения смятия, выпучивания и появления трещин при гибке трубу наполняют мелким сухим песком, просеянным через сито с ячейками около 2 мм, так как наличие крупных камешков может привести к продавливанию стенки трубы, а слишком мелкий песок для гибки труб непригоден, так как при высокой температуре спекается и пригорает к стенкам трубы.

 

Гибка труб в холодном состоянии выполняется с помощью различных приспособлений. Простейшим приспособлением для гибки труб диаметром 10 — 15 мм в свободном состоянии является плита с отверстиями, в которой в соответствующих местах устанавливаются штыри, служащие упорами при гибке.

Трубы небольших диаметров (до 40 мм) с большими радиусами кривизны гнут в холодном состоянии, применяя простые ручные приспособления с неподвижной оправкой. Гибочная оправка крепится к верстаку с двух сторон скобками. Трубу для гибки вставляют между гибочной оправкой и хомутиком, нажимают руками и гнут ее по желобообразному углублению гибочной оправки.

Трубы диаметром до 20 мм изгибают в приспособлении. Приспособление крепится к верстаку с помощью ступицы и плиты. На одной оси ступицы и плиты находится неподвижный ролик-шаблон с хомутиком. Подвижный ролик закреплен в скобе с рукояткой. Трубу для изгиба вставляют между роликами так, чтобы конец ее вошел в хомутик. Затем рукояткой повертывают скобу с подвижным роликом вокруг неподвижного ролика-шаблона до тех пор, пока труба не изогнется на требуемый угол.

Гибка медных и латунных труб. Подлежащие гибке в холодном состоянии медные или латунные трубы заполняют расплавленной канифолью или расплавленным стеарином (парафином), или свинцом. Порядок гибки аналогичен описанному ранее. Канифоль после гибки выплавляют, начиная с концов трубы, так как нагрев середины трубы, наполненной канифолью, разрывает трубу.

Медные трубы, подлежащие гибке в холодном состоянии, отжигают при 600 — 700 °С и охлаждают в воде. Наполнитель при гибке медных труб в холодном состоянии — канифоль, а в нагретом — песок. Латунные трубы, подлежащие гибке в холодном состоянии, предварительно отжигают» при 600 — 700 °С и охлаждают на воздухе. Наполнители те же, что и при гибке медных труб.

Дюралюминиевые трубы перед гибкой отжигают при 350 — 400 °С и охлаждают на воздухе.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: