Глава 2. Технология добычи нефти шахтным способом и рациональное использование минеральных ресурсов




В 1966-71 годах в научно-исследовательских институтах «ВНИИнефть» и «ПечорНИПИнефть» была обоснована технология термошахтной добычи нефти.

На основании этих работ в 1968-71 годах проведены опытно-промышленные работы по исследованию различных систем паротеплового воздействия на пласт в условиях нефтяных шахт. В результате чего была разработана и внедрена двухгоризонтная система термошахтной разработки.

Как показал опыт разработки Ярегского месторождения высоковязкой нефти, наиболее эффективным способом шахтной добычи нефти является термошахтный, включающий тепловое воздействие на пласт, способ получил впервые в мировой практике промышленное использование на этом месторождении.

Критериями выбора первоочередных объектов высоковязких нефей и природных битумов для разработки термошахтным способом являются: глубина залегания — до 600м; остаточные балансовые запасы нефти не менее 2,0 млн. т; устойчивые породы продуктивных пластов и вмещающих горизонтов, вязкость нефти более 50 мПа×с; нефтенасыщенность более 6% весовых и более 50% (объемных); газонасыщенность не более 10 м3 /т; пористость пород продуктивного пласта более 16 %, проницаемость более 0.1 мкм2; начальная температура пласта не выше 260С.

Основные геолого-физические характеристики продуктивного пласта Ярегского месторождения, обеспечивающие эффективность применения термошахтного способа: небольшая глубина залегания, большая эффективная толщина, хорошие коллекторские свойства, большая остаточная нефтенасыщенность после первичной разработки на естественном режиме истощения.

Практика применения теплового воздействия на трещиноватый коллектор показывает, что наличие густой сетки пологих скважин создает возможность для интенсивного прогрева, позволяет повысить коэффициент охвата неоднородного пласта.

При нагнетании теплоносителя в трещиноватый пласт, закачиваемый агент, особенно в начальной стадии тепловой обработки, распространяется преимущественно по трещинам. При этом происходит эффективный прогрев пласта из густой системы трещин за счет теплопроводности. При поддержании в трещинах постоянной температуры скорость прогрева определяется лишь продолжительностью процесса тепловой обработки и почти не зависит от темпа ввода тепла в пласт. Расчеты показывают, что текущий расход тепла на нагревание пласта при постоянной температуре в трещинах резко снижается во времени при почти постоянном темпе теплопотерь в окружающие породы. Отсюда делается вывод, что в условиях трещиновато-пористой среды высокая тепловая эффективность может быть достигнута при поддержании темпа ввода тепла в пласт на оптимальном уровне, который должен снижаться по мере прогрева пласта. Превышение оптимального уровня закачки теплоносителя приводит к дополнительным потерям тепла с добываемой жидкостью, увеличению тепловыделений в шахтную атмосферу и уходу тепла за пределы разрабатываемого участка. Ускорить прогрев пласта при описанном механизме теплового воздействия можно двумя способами - за счет увеличения охвата поверхности трещин теплоносителем или за счет повышения параметров закачиваемого агента.

Основными факторами, участвующими в механизме нефтеотдачи, являются: снижение вязкости нефти, которое создает условия для гидродинамического вытеснения; термическое расширение пластовых флюидов; гравитационное дренирование пласта; вытеснение нефти за счет капиллярной пропитки.

Роль этих факторов в механизме нефтеотдачи зависит в основном от температуры пласта и возрастает с ее увеличением.

При средней температуре пласта 70-90°С нефтеотдача от этих факторов может быть следующей:

- за счет снижения вязкости нефти и гидродинамического вытеснения— 15-20%;

-за счет термического расширения пластовых флюидов — 5-10%;

-за счет гравитационного дренирования пласта — 15-20%;

-за счет капиллярной пропитки — 6-10%.

Таким образом, за счет указанных факторов нефтеотдача при термошахтной разработке Ярегского месторождения может достичь 40-60%, а с учетом предшествующей разработки залежи на естественном режиме 45-65%.

Технология термошахтной добычи нефти реализуется на Ярегском месторождении в виде нескольких систем: двухгоризонтной, одногоризонтной, двухъярусной, панельной.

Из них наибольшее распространение получила двухгоризонтная система, а другие имели в основном опытно-промышленный характер.

Сущность двухгоризонтной системы заключается в том, что нагнетание пара в пласт производится с надпластового горизонта, расположенного на 10-30 м выше кровли пласта, через вертикальные и крутонаклонные скважины, а отбор нефти осуществляется из пологовосходящих добывающих скважин длиной до 300 м, пробуренных из расположенной в продуктивном пласте галереи (см. рис.1).

Сосредоточение в продуктивном пласте или в непосредственной близости от него основных технологических процессов, применение густой сетки размещения нагнетательных и добывающих скважин, закачка в пласт теплоносителя (пара) обеспечивают высокие технологические показатели термошахтной разработки. Паро-нефтяное отношение составляет 2,54 т/т.

Подготовительные работы: для добычи нефти в условиях нефтяных шахт с применением термошахтной технологии необходимо проведение комплекса подготовительных работ, который включает:


 

Рис. 1

 

- горные работы (проходка горных выработок);

- бурение подземных скважин (нагнетательных и добывающих);

- монтаж поверхностных и подземных паропроводов (обвязку устьев нагнетательных скважин в буровых камерах, установку запорной арматуры на устьях добывающих скважин);

- монтаж насосных агрегатов в камерах добычных уклонов;

- монтаж нефтепроводов и газопроводов.

По двухгоризонтной системе термошахтной разработки необходимо проведение или восстановление в надпластовом горизонте горных выработок откаточных, вентиляционных и полевых штреков и уклона с подъемными площадками, наклонными частями и эксплуатационной галереей в нижней части пласта.

Все горные выработки в надпластовом горизонте проходятся по пустым налегающим породам: аргиллитам, туффитам и диабазам. Выработки эксплуатационной галереи и наклонные части уклона (половина расстояния) проходят по нефтенасыщенному пласту. Срок службы этих выработок составляет 10 – 12 лет. Исходя из этого сечения выработок приняты минимальными, но вместе с тем отвечающими их назначениям. Поперечные сечения и конструкция крепи горизонтальных и наклонных выработок соответствуют типовым сечениям подземных выработок, ранее утвержденных Госстроем.

Минимальные поперечные сечения выработок установлены:

10 для главных откаточных и вентиляционных выработок, вентиляционных и промежуточных штреков и уклонов – 6,0 м2 при высоте этих выработок в свету не менее 1,9 м от головки рельсов,

10 для вентиляционных сбоек – не менее 4,5 м2.

Двухгоризонтная система разработки, получившая промышленное использование на Ярегских нефтешахтах, явилась продолжением ранее применяемых шахтных систем на естественном режиме истощения (ухтинской, уклонно-скважинной) со всеми их многочисленными недостатками, а кроме того, закачка пара в пласт привела к дополнительным проблемам, требующим больших текущих и капитальных затрат на нормализацию теплового режима, подачу в шахту огромного количества воздуха и, как следствие, значительного увеличения сечений горных выработок. Все это явилось серьезным тормозом для дальнейшего развития традиционной термошахтной технологии.

Особенностью нового подземно-поверхностного способа разработки является следующее: нефтяное месторождение (залежь) разбивается на отдельные нефтепромысловые блоки (минишахты), размеры которых определяются технической возможностью подземного станка по бурению в продуктивном пласте горизонтальных (пологонаклонных) нагнетательных и добывающих скважин.

Вскрытие нефтяного пласта осуществляется вертикальными шахтными стволами небольшого диаметра. Согласно установленным «Правилам безопасности угольных (нефтяных) шахт» необходимо иметь не менее двух стволов диаметром в свету не менее 2,0 м.

В кровле нефтяного пласта сооружается нагнетательная галерея, у подошвы пласта — добывающая галерея с емкостями для сбора и подготовки нефти (песколовушки, нефтеводосборники). Нагнетательная и добывающая галереи являются выработками околоствольного двора кольцевого типа и служат для закачки в пласт теплоносителя, отбора жидкости, ее подготовки и транспорта на поверхность. Протяженность галерей выбирается из расчета размещения необходимого количества добывающих и нагнетательных скважин по сверхплотной сетке (с расстояниями между забоями скважин до 25м). Сечение выработок галерей принимается исходя из размещения в них бурового станка. Крепление выработок производится металлобетонной арочной крепью с железобетонной затяжкой и гидротеплоизоляцией свода и стен. Из галереи, расположенной в кровле продуктивного пласта, бурят до 300 горизонтальных (пологонаклонных) нагнетательных скважин длиной 300-500 м, располагая их в два-три или более ярусов в зависимости от толщины пласта. Конструкция скважин обеспечивает нагнетание теплоносителя давлением до 1.0 Мпа на устье, а для доставки теплоносителя с давлением 0.2-0.3 Мпа до забоя скважины прокладывается лифтовая труба диаметром 50 мм.

Добывающие скважины объединяются при эксплуатации в группы по 10-12 штук и подключаются к групповым коллекторам, последние подключаются к сборному коллектору. На групповых коллекторах предусматривается установка средств автоматизации отбора и замера продукции скважин. Автоматизируются процессы регулирования закачки пара и подъема жидкости на поверхность.

Добываемая жидкость (нефть, вода, конденсат) и мехпримеси по сборному коллектору самотеком собираются в специально сооружаемые на добычном горизонте емкости (песколовушки, водонефтесборники). В песколовушках мехпримеси оседают, а нефть с водой перетекает в водонефтесборники, откуда погружными (скважинными) насосами автоматически перекачивается на установку предварительного сброса пластовой воды, расположенную на поверхностной промплощадке промысла.

Жидкость, поступающая в нагнетательную галерею, перепускается на добычной горизонт в водонефтесборные емкости по специально пробуренной скважине. Жидкость откачивается из шахты по нефтесборочному коллектору и поступает в резервуары предварительного сброса, в которых отстаивается в течение 6 часов при температуре 70°С, а затем перекачивается насосами дожимной насосной в резервуарный парк нефтебазы.

Для эксплуатации подземно-поверхностного промысла на поверхностной промплощадке располагается надшахтный комплекс.

Подъемно-поверхностный способ является более совершенным вариантом термошахтной разработки. Основные технические и технологические преимущества новой технологии в следующем:

- удельный объем горнопроходческих работ, наиболее опасных и дорогостоящих, снижается до минимума (в десятки раз), что обеспечивает значительное сокращение капитальных затрат и количества людей, работающих в подземных условиях;

- технологические процессы по закачке пара, отбору и транспорту жидкости автоматизируются, осуществляя закрытую эксплуатацию добывающих и нагнетательных скважин, при этом выработки галерей изолируются герметическими перемычками от рудничной атмосферы, создавая условия безлюдной эксплуатации;

- минимальное количество горных выработок и закрытая их эксплуатация создает условия для закачки пара максимальных параметров, что способствует более полному и быстрому охвату продуктивного пласта процессом теплового воздействия, следовательно, максимальному нефтеизвлечению;

- закачка пара высоких параметров обеспечивает возможность эффективной эксплуатации подземных скважин длиной 300 м и более, а следовательно, ввода в разработку больших площадей месторождения одним блоком (минишахтой) со сроком эксплуатации 15-20 лет;

- последовательное обустройство и ввод в разработку отдельных минишахт подземно-поверхностного промысла обеспечивает равномерные инвестиции на строительство с длительным сроком эксплуатации и высокими стабильными производственными мощностями всего промысла и минимальные сроки и затраты на ввод в эксплуатацию каждой отдельной минишахты;

- все вспомогательные службы (котельная, компрессорная, центральный пункт сбора и подготовки нефти, центральная электростанция, административно-бытовой комбинат и др.), предусматривается централизовать на единой площадке промысла, что существенно сокращает капитальные и эксплуатационные затраты и обеспечивает последовательное наращивание мощностей промысла в течение всего срока его службы.

Разработка месторождения на естественном режиме истощения показала, что количество нефти, извлекаемой за счет естественной энергии пласта, не превышает 10 %, а большая часть нефти находится в капиллярах и пленочном состоянии. Нефть по состоянию её в пласте можно разделить на следующие виды:

- нефть трещин и крупных пор, дренируемая пластовой энергией - 10 ¸ 20 %;

- нефть, капиллярно удерживаемая в мелких порах (освобождается при дроблении песчаника) - 15¸ 20 %;

- пленочная нефть, связанная с песчаником - 47 ¸ 48 %;

- остатки пленочной нефти, смолы, битумы, очень трудно извлекаемые - 10 ¸ 20 %.

Вмещающий нефть песчаник отличается хорошими коллекторскими свойствами, однако, не смотря на это, добыча нефти крайне затруднена в силу специфических особенностей свойств нефти и состояния её в пласте.

К основным факторам, снижающим нефтеотдачу пласта, относятся:

- высокая вязкость нефти;

- большое содержание в нефти поверхностно-активных компонентов, что приводит к образованию малоподвижных структурных слоёв, примыкающих к поверхностям породы и снижающих проницаемость коллектора;

- большая величина поверхностного натяжения нефти на границе с водой и краевого угла смачивания;

- низкая пластовая энергия и температура пласта.

Важнейшим фактором, повышающим нефтеотдачу пласта, является снижение вязкости нефти путём теплового воздействия на пласт. Кривая вязкости приведенная на рис. 2 показывает, что при температуре 120оС вязкость нефти снижается до 12 ч 15 мПа×с, т. е. Более, чем в 1000 раз. Кроме того, при тепловом воздействии на пласт происходят следующие изменения физико-химических свойств пластовой системы, способствующие увеличению нефтеотдачи пласта:

- повышение проницаемости коллектора для нефти и воды в результате разрушения адсорбционных слоёв нефти;

- уменьшение поверхностного натяжения нефти и краевого угла смачивания;

- тепловое расширение пластовых флюидов;

- улучшение реологических свойств нефти;

- разрушение коллектора и повышение его однородности.

 

Рис. 2. Зависимость вязкости нефти от температуры

Таблица 2

Запасы нефти на 01. 01. 2004 год

Наименования Участки Всего по шахтному полю
Отработанные на естественном режиме Не отработанные на естественном режиме
Площадь нефтеносности, га      
Нефтенасыщенная толщина, м 26,9 4,7 22,5
Объём нефтенасыщенных пластов, тыс. м3      
Коэффициент открытой пористости 0,26 0,26 0,26
Коэффициент нефтенасыщенности 0,87 0,87 0,87
Плотность нефти в стандартных условиях на поверхности, т/м3 0,945 0,945 0,945
Начальные балансовые запасы, тыс. тонн.      
Накопления добычи нефти, тыс. тонн.   -  
В том числе на естественном режиме   -  
За счет прогрева пласта   -  
Остаточные балансовые запасы, тыс. тонн.      
Принятый коэффициент нефтеотдачи 0,45 0,45 0,45

 

Основным сопутствующим компонентом при добыче нефти является титан. На промплощадке НШ-3 действует комбинат по производству титановых белил, которые поставляются на продажу на территории России.


 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: