Свойства скалярного произведения.
Для любых векторов и справедливы следующие свойства скалярного произведения:
1. свойство коммутативности скалярного произведения ;
2. свойство дистрибутивности или ;
3. сочетательное свойство или , где - произвольное действительное число;
4. скалярный квадрат вектора всегда не отрицателен , причем тогда и только тогда, когда вектор нулевой.
Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.
Для примера докажем свойство коммутативности скалярного произведения . По определению и . В силу свойства коммутативности операции умножения действительных чисел, справедливо и , тогда . Следовательно, , что и требовалось доказать.
Аналогично доказываются остальные свойства скалярного произведения.
Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть, и , откуда следует
Вычисление скалярного произведения, примеры и решения.
Решение различных задач на вычисление скалярного произведения векторов сводится к использованию свойств скалярного произведения и формул
1. ;
2. ;
3. или ;
4. .
Разберем решения наиболее часто встречающихся примеров.
Начнем с самых простых случаев, когда вычисление скалярного произведения производится на основе определения.
Пример.
Вычислите скалярное произведение двух векторов и , если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.
Решение.
У нас есть все данные, чтобы вычислить скалярное произведение по определению: .
|
Ответ:
.
Пример.
В прямоугольной системе координат заданы два вектора и , найдите их скалярное произведение.
Решение.
В этом примере целесообразно использовать формулу, позволяющую вычислить скалярное произведение векторов через их координаты:
Ответ:
.
Пример.
Вычислите скалярное произведение векторов и , если известны координаты трех точек в прямоугольной декартовой системе координат на плоскости .
Решение.
Найдем координаты векторов по координатам точек их начала и конца:
Теперь можно использовать формулу для вычисления скалярного произведения в координатах:
Ответ:
.
Сейчас рассмотрим пример, требующий сначала применить свойства скалярного произведения, и только затем переходить к вычислению.
Пример.
Вычислите скалярное произведение векторов и , если векторы и перпендикулярны и их длины равны 3 и 2 единицы соответственно.
Решение.
. По свойству дистрибутивности скалярного произведения имеем . Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:
В силу свойства коммутативности последнее выражение примет вид
.
Итак, после применения свойств скалярного произведения имеем . Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:
Ответ:
.
Сейчас рассмотрим пример на нахождение скалярного произведения векторов через числовую проекцию.
Пример.
Вычислите скалярное произведение векторов и , если , а проекция вектора на направление вектора имеет координаты .
Решение.
Векторы и противоположно направленные, так как , следовательно, числовая проекция вектора на направление вектора будет равна длине вектора со знаком минус: .
|
Вычисляем скалярное произведение .
Ответ:
.
Также встречается масса обратных задач, когда скалярное произведение векторов известно, а требуется найти, например, длину одного из векторов, угол между векторами, числовую проекцию, либо что-нибудь еще.
Пример.
При каком значении скалярное произведение векторов и равно -1.
Решение.
Так как скалярное произведение равно сумме произведений соответствующих координат, то . С другой стороны по условию . Тогда искомое значение находим из уравнения , откуда .
Ответ:
.