Формы почвенного воздуха




Газы почвенного воздуха находятся в нескольких физических состояниях: собственно почвенный воздух – свободный и защемленный, адсорбированные и растворенные газы.

Свободный почвенный воздух – это смесь газов и летучих органических соединений, свободно перемещающихся по системам почвенных поровых пространств, сообщающийся с воздухом атмосферы. Его объем в воздушно-сухой почве соответствует её порозности. При увлажнении почвы количество воздуха уменьшается пропорционально насыщению влагой. При полной влагоемкости почвы газовая фаза присутствует только в растворенном состоянии.

Защемлённый почвенный воздух – воздух, находящийся в порах, со всех сторон изолированных водными пробками. Чем более тонкодисперсна почвенная масса и компактней ее упаковка, тем большее количество защемленного воздуха она может иметь. В суглинистых почвах содержание защемленного воздуха достигает более 12% от общего объёма почвы или более четвертой части всего ее порового пространства. Защемленный воздух неподвижен, практически не участвует в газообмене между почвой и атмосферой, существенно препятствует фильтрации воды в почве, может вызывать разрушение почвенной структуры при колебаниях температуры, атмосферного давления, влажности.

Адсорбированный почвенный воздух – газы и летучие органические соединения, адсорбированные почвенными частицами на их поверхности. Чем более дисперсна почва, тем больше содержит она адсорбированных газов при данной температуре. Количество сорбированного воздуха также зависит от минералогического состава почв, от содержания органического вещества, влажности. Песок поглощает воздуха в 10 раз меньше, чем тяжелый суглинок, мелкодисперсный кварц сорбирует СО2 в 100 раз меньше, чем гумус.

Растворенный воздух – газы, растворённые в почвенной воде. Растворённый воздух ограниченно участвует в аэрации почвы, так как диффузия газов в водной среде затруднена. Однако растворенные газы играют большую роль в обеспечении физиологических потребностей растений, микроорганизмов, почвенной фауны, а также в физико-химических и химических процессах в почвах.

Подчеркнём особую значимость растворенного в воде углекислого газа. При высокой растворимости СО2 велика его роль в создании кислотности, в почвах при отсутствии карбонатов (СаСО3 и др.) происходит подкисление среды:

СО2 + Н2О ↔ 2Н+ + СО3 2-

В нейтральных и щелочных почвах СО2, растворенный в воде, – главное условие миграции карбонатов.

 

Состав почвенного воздуха

Из всех компонентов почвы воздушная фаза – наиболее динамичная по объему и соотношению формирующих её газов. Главные по массе – это N2, О2 и СО2, а также вода. Примерное их содержание в сравнении с атмосферой (% от объема):

 

Газы Атмосфера Газовая фаза почвы
N2   78-86
О2   10-20
СО2 0,03 0,1-15
Н2О относительная влажность Менее 95 Более 95

 

Почвенный воздух имеет почти такое же количество азота, как и атмосфера Земли, кислорода обычно в два раза меньше, а двуокиси углерода – в десятки и сотни раз больше. Установлено, атмосфера Земли на 90% обеспечивается углекислым газом, т. е. основным источником углеродного питания растений, за счет его диффузии из почвенного воздуха. Вода, как неизменный компонент в почвенном воздухе всегда находится на грани конденсации и ее переход в капельно-жидкое состояние возможен при относительно небольших снижениях температур. Это часто служит источником свободной воды, например, в песках пустыни, в глубоких горизонтах чернозёмов при градиенте температур воздуха почвы в верхних слоях 30 °С, в нижних 10 °С. Общеизвестно зимняя конденсация Н2О в промерзающих слоях сельских и городских почв (появление мокрой почвы в крытых токах, увлажнение почв под асфальтом городских улиц и т. д.).

Высока динамичность содержания в воздухе кислорода и диоксида углерода.

В незначительных количествах в почвенном воздухе присутствуют такие компоненты, как N2О, NО2, СО, различные углеводороды (этилен, ацетилен, метан), сероводород, аммиак, эфиры и др. Происхождения микрогазов связывается с жизнедеятельностью организмов, особенно в анаэробных условиях. Болота часто выделяют самовозгорающиеся и психотропные газы. Обязательно присутствие инертных газов, в том числе и радиоактивных. Источником последних является распад радионуклидов минеральной части почвы. Естественная радиоактивность почвенного воздуха намного выше атмосферного.

 

Свойства воздушной фазы

Главные свойства воздушной фазы почв: воздухоёмкость, воздухопроницаемость и высокая динамичность воздухообмена и химического состава.

Воздухоёмкость – это та часть объема почвы, которая занята воздухом при данной влажности. Выделяют полную, или потенциальную, воздухоёмкость, которая свойственна сухим почвам. Она соответствует пористости (порозности) почв и напрямую зависит от их плотности. Актуальная воздухоёмкость – это содержание воздуха в почве в каждый конкретный момент при том или ином уровне увлажнения. Таким образом, воздухосодержание (Рв) определяется:

Рв = Робщ – Pw,

где Робщ – порозность почвы, Pw – влажность почвы. Все величины выражаются в процентах от объёма.

Вода и воздух в почвах антагонисты: чем больше воды в почве, тем меньше воздуха. Оптимальная экологическая гармония для большинства растений – вода и воздух должны содержаться в равных по объему количествах, что соответствует влажности почвы 60% от НВ.

Воздухопроницаемость – способность почвы пропускать через себя воздух. Воздухопроницаемость – непременное условие газообмена между почвой и атмосферным воздухом. Чем она выше, тем лучше газообмен, тем больше в почвенном воздухе содержится кислорода и меньше углекислого газа. Воздух в почве передвигается по порам, не заполненным водой и не изолированным друг от друга. Чем крупнее поры аэрации, тем лучше воздухопроницаемость. В структурных почвах, где наряду с капиллярными порами имеется достаточное количество крупных некапиллярных пор, создаются наиболее благоприятные условия для воздухопроницаемости.

Динамика почвенного воздуха зависит от многих факторов.

Постоянно протекающий процесс обмена почвенного воздуха с атмосферным называется аэрацией почвы.

При постоянной влажности почвы аэрация зависит от интенсивности диффузии и изменения температуры и барометрического давления.

Диффузия – перемещение газов в соответствии с их парциальным давлением. Поскольку в почвенном воздухе кислорода меньше, а углекислого газа больше, чем в атмосфере, то под влиянием диффузии создаются условия для непрерывного поступления кислорода в почву и выделения СO2 в атмосферу.

Изменение температуры и барометрического давления также обусловливает газообмен, потому что происходит сжатие или расширение почвенного воздуха.

При известной значимости в аэрации почвы диффузии и физического изменения объема воздушной массы важным фактором аэрации следует признать постоянную изменяемость воздухоемкости почвы, а это в первую очередь связано с динамикой влажности. Увлажнение почвы осадками или орошением, испарение воды, транспирация ее растениями – факторы постоянного газообмена почвы и атмосферы. С влажностью почвы также связано изменение поровых пространств при набухании и усадке твердой фазы почвы.

При аэрации почвы постоянна тенденция уравнивания вещественного состава воздуха почвы и атмосферы. Но равновесие всегда нарушается в сторону накопления продуктов жизнедеятельности организмов и тем в большей степени, чем выше биологическая активность. В связи с этим различают суточную и сезонную динамику почвенного воздуха.

Суточная динамика определяется суточным ходом атмосферного давления, температур, освещенности, изменениями скорости фотосинтеза. Эти параметры контролируют интенсивность диффузии, дыхания корней, микробиологической активности.

Суточные колебания состава почвенного воздуха затрагивают лишь верхнюю полуметровую толщу почвы. Амплитуда этих изменений для кислорода и диоксида углерода не велика. Наиболее существенно в течение суток изменяется интенсивность почвенного дыхания.

Сезонная (годовая) динамика определяется годовым ходом атмосферного давления, температур и осадков и тесно связанными с ними вегетационными ритмами развития растений и микробиологической деятельности. Годовой воздушный режим включает в себя динамику воздухозапасов, воздухопроницаемости, состава почвенного воздуха, растворения и сорбции газов, почвенного дыхания.

Сезонная динамика состава почвенного воздуха отражает биологические ритмы. Концентрация диоксида углерода имеет в верхней толще четко выраженный максимум в период наивысшей биологической активности. В это время происходит насыщение почвенной толщи углекислотой. По мере затухания биологической деятельности происходит отток СO2 за пределы почвенного профиля. Динамика концентрации кислорода имеет обратную зависимость.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: