Всасывание, транспорт и распределение металлов.




Для токсического действия необходим контакт яда с биологическим субстратом – объектом этого действия. Контакт может осуществляться при циркуляции яда во всех жидких средах организма (крови, ликворе, межтканевой жидкости и т.п.), а также при непосредственном соприкосновении с оболочками клеток, цитоплазмой и её составными элементами.

В силу этого в токсическом действии металлов, как и других ядов, большое значение имеют их транспорт, распределение, концентрация в месте действия, метаболизм, скорость и пути выделения. Вопросы метаболизма ядов, имеющие большое значение для понимания действия органических веществ, мало изучены в отношении металлов. Однако некоторые данные о превращении металлов в живом организме все же имеются. Известны происходящие в организме восстановительные процессы, при которых металлы и неметаллы из состояния высшей валентности переходят в состояние низшей валентности. Это установлено для железа, марганца, молибдена, ванадия, хрома, мышьяка.

Концентрация металлов в месте действия, как и вообще любых ядов или фармакологических средств, является результатом динамических процессов всасывания из места поступления, проникания в жидкие среды, транспорта, распределения в органах и тканях, химических превращений в последних и процессов выведения из организма.

Резорбция и распределение, а также выделение металлов, как и вообще экзогенных ядов, в конечном итоге схематически представляют как ряд процессов распределения между внешней средой и биосредами. В свою очередь в биосредах - организмах - происходит перераспределение между фазами: кровью и тканевыми и межклеточными жидкостями, между последними и клетками, между внутриклеточными структурами.

Для осуществления непосредственного контакта любого яда с тканями, клетками, рецепторами и т.д. ему приходится проникать через множество пограничных поверхностей – биологических мембран. Роль последних играет кожа, слизистая желудочно-кишечного тракта, эндотелии сосудов, альвеолярный эпителий, вообще гистогематические барьеры, оболочка клеток, внутриклеточных структур и т.д. По современным представлениям биологические мембраны имеют белково-липидную структуру. Клеточные мембраны представляют самостоятельный структурный элемент, активно участвующий в процессах обмена веществ. Мембраны рассматриваются как биологические, динамические структуры, содержащие ряд важных энзимных систем. Повреждения, вызываемые ядами, нарушающими функции энзимов, приводят к изменению проницаемости транспорта через эти оболочки.

Поверхность клеточных оболочек несет отрицательный заряд, что показано на примере эритроцитов, сперматозоидов, многих бактерий; но в тоже время на отдельных участках заряд может меняться. Ионы, достигнув поверхности клетки, либо фиксируются на ней, либо отталкиваются в силу одноименности заряда. Например, полагают, что анионы проходят эритроциты через положительно заряженные поры; положительно заряженные ионы не могут проникнуть через них, с чем связана плохая проницаемость эритроцитов (и других клеток) для катионов. Одни анионы (хлор, бром) проникают в эритроциты почти мгновенно, но ряд других более сложных (например, JO3, селеновая кислота) накапливаются в эритроцитах очень медленно.

Схематически транспорт веществ через пограничные поверхности можно разделить на:

а) поступление веществ в клетки путем диффузии через водные и липидные барьеры;

б) вода и растворенные в ней вещества как бы фильтруются в клетки (вступают в силу гидродинамические и осмотические законы);

в) перенос липоидонерастворимых веществ объясняется образованием их соединений с компонентами мембраны. Например, полагают, что двухвалентные металлы проникают через пограничные мембраны в виде фосфатных комплексов.

Клеточные оболочки могут играть и защитную роль в отношении вредного действия ядов, в частности металлов. Последние в первую очередь фиксируются на поверхности и лишь медленно проникают вглубь клетки. Это продемонстрировали Passow и сотр. (1961), а также Rothstein и Clarkson (1959) на примере солей ртути и меди. При действии последних первоначально нарушается сорбция глюкозы у мышей, позже – дыхание.

Соли металлов как хорошо растворимые и диссоциирующие соединения, попадая в организм, распадаются на ионы. Скорость и полнота резорбции зависят от соотношения между ионизированной и неионизированной частью молекулы.

Металлы высшей валентности и так называемые тяжелые металлы, склонные к образованию очень трудно растворимых гидроокислов, фосфатов, альбуминатов или весьма стойких комплексов, плохо всасываются из желудочно-кишечного тракта или при любых других путях введения.

Таким образом, упомянутые свойства металлов и их соединений, способность к диссоциации, образование свободных ионов, гидроокисей, образование прочных альбуминатов, гидратов, фосфатов определяют количество и состояние металла в организме, в первую очередь в крови. Свободные ионы металлов быстро удаляются из крови; по данным Д.И.Семенова и И.П.Трегубенко (1958), - в течение 5 минут. Они также быстро выделяются из организма или накапливаются в скелете. Последнее, так же как и быстрое выделение с мочой, обычно указывает на то, что металл в организме циркулирует в ионизированном или молекулярно-дисперсном состоянии.

Благодаря способности к комплексообразованию металлы в тканях откладываются в виде комплексных соединений с белками, аминокислотами. Однако распределение их по большей части неравномерно, а в ряде случаев избирательно. Например, высокое содержание в почках ртути, таллия, урана, кадмия или бария; рубидия, лития в мышцах; преимущественное накопление в эритроцитах калия, рубидия, свинца, шестивалентного хрома, мышьяка, селена и некоторых других.

Прочность связей, степень сродства катионов металлов к функциональным химическим группировкам в организме, также может определять не только общую токсичность, но избирательность или специфичность действия. Это можно проследить на примере такой распространенной во всех тканях и вместе с тем такой биологически важной функциональной группе – сульфгидрильной. Так, специфическое повреждение почек такими металлами как, как ртуть или кадмий, объясняют высоким сродством их к SH-группам ткани почек.

Приведенные примеры указывают, что возможны закономерности специального влияния металлов, однако для их выявления нужно изучать механизмы влияния отдельных металлов на отдельные ферментные системы, отдельные звенья обменных процессов, деятельность желез внутренней секреции и т.д.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: