Задание 9. Фильтр-восстановитель




1. Определить Fср.

2. Изобразить идеальные амплитудно-частотные и фазочастотные характеристики фильтра-восстановителя.

3.Найти импульсную реакцию g(t) идеального фильтра-восстановителя. Начертить график g(t).

Фильтр-восстановитель представляет собой фильтр нижних частот с частотой среза Fср.

 

1.Частоту среза фильтра-восстановителя найдем по теореме Котельникова.

кГц

 

2.

 
 

Идеальная АЧХ фильтра-восстановителя имеет вид:

Идеальная ФЧХ фильтра-восстановителя имеет вид:

 
 

.

3.Найдем импульсную реакцию фильтра-восстановителя

 

Пусть

 

 
 

 

Рис. 9.3. Импульсная реакция фильтра

 

Принципиальная схема модулятора

 

Частотные модуляторы

Частотные модуляторы представляют собой устройства, обеспечивающие связь между передаваемым (модулирующим) сигналом и выходным сигналом, изменяющимся по частоте. Обычно в широкополосных системах связи модуляция осуществляется на промежуточной частоте. Наиболее часто используется промежуточная частота 70 МГц. Основное требование, предъявляемое к таким модуляторам, заключается в очень высокой степени линейности модуляционной характеристики. Практически коэффициент нелинейных искажений модулятора должен лежать в пределах 0,01-0,5 %. При этом будут выполнены нормы на мощность переходных шумов, создаваемых модемами в многоканальных системах связи с ЧРК.

Упрощенная структурная схема частотного модулятора показана на рис. 10.1

Рис. 10.1

В общем виде частотный модулятор - это генератор (ГУН), частота колебаний которого управляется напряжением, подаваемым на вход модулятора. Наиболее распространенный способ частотной модуляции заключается в воздействии на реактивные элементы колебательного контура, задающего частоту колебаний самовозбуждающегося LC генератора.

Удобным современным элементом, применяющимся для этих целей, является варикап (варактор). Варикап представляет собой полупроводниковый диод, емкость p-n перехода которого имеет сильно выраженную зависимость от приложенного напряжения. Для работы в качестве управляемой емкости используется обратная ветвь характеристики диода, так как при этом получается высокая добротность и температурная стабильность элемента.

На рис. 10.2 показана одна из многих возможных схем LC генератора, которая может выполнять функции частотного модулятора. Здесь транзистор VT1 включен по схеме с общей базой. Резисторы R1, R2 и R3 задают режим транзистора по постоянному току. Положительная обратная связь осуществляется за счет внутренней емкости коллектор-эмиттер транзистора VT1 и емкости С1. Частота генерации определяется параметрами параллельного LC контура, состоящего из индуктивности L1, емкостей варикапов VD1, VD2 и коллекторной емкости транзистора. Для уменьшения паразитных реактивностей и упрощения схемы контур заземлен по постоянному току. Применение двух, включенных встречно, варикапов позволяет улучшить форму напряжения, вырабатываемую генератором, приближая ее к синусоидальной. Через резистор R4 и дроссель Др2 на варикапы подается запирающее напряжение смещения Есм, которое задает рабочую точку варикапов.

Рис. 10.2

Модулирующее напряжение поступает через развязывающий конденсатор С3. Под воздействием модулирующего напряжения меняется емкость варикапов и, следовательно, частота колебаний, вырабатываемая генератором. На рис. 10.3 показана типовая характеристика высокочастотного варикапа. Подобной характеристикой обладают приборы типа КВ-102, КВ-109, КВ-121 и др.

Рис. 10.3

Известно, что связь между резонансной частотой контура и емкостью конденсатора квадратичная.

.

Следовательно, для получения линейной частотной модуляции необходимо иметь квадратичную зависимость емкости и напряжения. Из рисунка видно, что характеристика варикапа близка к квадратичной зависимости. Однако совпадение не полное и практически линейную модуляцию можно получить только на небольшом участке характеристики, выбираемом при настройке модулятора индивидуально для различных экземпляров варикапов.

Рис. 10.4

Рисунок 10.4 иллюстрирует процесс изменения емкости варикапа в зависимости от приложенного напряжения. Удовлетворительная линейность получается при девиации частоты, не превышающей 0,5-1,5 % от центральной частоты модулятора. Следовательно, при частоте 70 МГц девиация частоты составит 0,5-0,7 МГц, что явно недостаточно для широкополосной системы связи.

Поэтому на практике получила распространение схема частотного модулятора на биениях, упрощенная структурная схема которого представлена на рисунке 10.5. Здесь применяются два генератора, управляемых напряжением, работающих на частотах в диапазоне 300-400 МГц. Частоты генераторов отличаются друг от друга на величину, равную промежуточной частоте 70 МГц, и выбираются так, чтобы продукты преобразования частоты в смесителе (СМ) не создавали помех в полосе частот 50-90 МГц.

Рис. 10.5

Принципиальные схемы генераторов могут быть подобны схеме, представленной на рисунке 10.2. Варикапы в генераторах включаются в противоположных полярностях, а модулирующие сигналы подаются на оба генератора синфазно. Благодаря этому девиация частоты модулятора удваивается и, кроме того, компенсируются нелинейные искажения по четным гармоникам. Сигналы с выходов обоих генераторов проходят на смеситель через линеаризирующие устройства, уменьшающие искажения по нечетным гармоникам. Частотные модуляторы, выполненные по подобным схемам, широко применяются в радиорелейной аппаратуре. Например, в аппаратуре «Восход», «Дружба», «Курс» и пр.

Более современные решения связаны с построением модуляторов на интегральных схемах. При этом LC генераторы не технологичны и поэтому применяются RC генераторы. Наибольшее распространение для этих целей нашли мультивибраторы.

Известно, что частота колебаний, вырабатываемая мультивибратором, может меняться в широких пределах при изменении постоянной времени RC цепей. В литературе рассматриваются ряд схемных решений мультивибраторов, предназначенных для работы в качестве ГУН. Весьма удобная схема мультивибратора показана в упрощенном виде на рисунке 10.6.

Рис. 10.6

Здесь мультивибратор выполнен на комбинации каскадов с общей базой (VT1) и общим коллектором (VT2). Такая комбинация позволяет в наибольшей степени реализовать частотные свойства транзисторов, позволяя работать на частотах в сотни МГц. Рабочие режимы транзисторов задаются при помощи управляемых генераторов тока (I), включенных в качестве эмиттерных резисторов. Положительная обратная связь осуществляется через конденсатор С2. В коллектор транзистора VT2 включен резистор R2, с которого снимается выходное напряжение генератора. При подаче модулирующего напряжения на один или оба генератора тока происходит изменение режимов транзисторов и, следовательно, изменение скорости заряда - разряда конденсатора С2 и, значит, осуществляется частотная модуляция.

Близкий к данному принцип использован при построении ряда интегральных схем (531ГГ1, 500ГГ1 и др.). Принципиальная схема частотного модулятора на микросхеме 500ГГ1 показана на рисунке 10.7. Там же показана его статическая модуляционная характеристика.

Рис. 10.7

Из характеристики видно, что при изменении управляющего напряжения от 0 до 2 В вырабатываемая частота меняется почти на порядок при достаточно высокой линейности. Поэтому данная схема может быть основой для построения высококачественных, простых и дешевых частотных модуляторов. Микросхема выполняется по ЭСЛ технологии и заключена в шестнадцативыводной пластмассовый или металлокерамический корпус. Общий недостаток, присущий схемам на мультивибраторах, заключается в нестабильности частоты. Поэтому при повышенных требованиях к стабильности данные схемы необходимо дополнять системами АПЧ, термостабилизации и пр. Кроме того, выходной сигнал по форме приближается к меандру и содержит большое количество гармоник, для устранения которых на выходе ЧМ необходимо ставить фильтрующие цепи.

Из основных требований, предъявляемых к частотным модуляторам для широкополосных систем связи, можно выделить следующие:

- малые нелинейные искажения при девиации частоты в несколько мегагерц;

- отсутствие паразитной амплитудной модуляции;

- оптимальная крутизна модуляционной характеристики;

- стабильность центральной частоты.

Выводы

В данной контрольной работе была рассмотрена структурная схема системы связи и назначение ее элементов. Рассчитаны основные показатели источника сообщения, дискретизатора, кодера, модулятора, канала связи, демодулятора, декодера, фильтра-восстановителя. Основные показатели в ходе выполнения контрольной работы составили:

Значение плотности вероятности внутри интервала от amin до amax составило 0,102;

Шаг квантования по времени 20мс;

Число уровней квантования L при равномерном шаге составило 98;

Производительностью источника 0,33 Мбит/сек;

Найдем минимальное значение к, необходимое для кодирования всех L уровней квантованного сообщения a(ti) 7;

Отношение сигнал/шум при минимальном напряжении 2В составляет приемлемую величину 5,93;

Эффективность использования пропускной способности канала связи 0,074.

На сегодняшний день все вопросы, касающиеся радиосвязи и средств ее непосредственного обеспечения очень актуальны, тем боле, что радиосвязь с каждым днём всё глубже проникает во все сферы деятельность человека, и позволяет оперативно передавать информацию от абонента к абоненту, практически мгновенно, минуя огромные расстояния.

 

Список источников

1. Баскаков С.И. Радиотехнические цепи и сигналы, -М.: Высшая школа, 2003 г.

2. Гоноровский И.С. Радиотехнические цепи и сигналы, -М.: Дрофа, 2006 г.

3. Зюко А. Г., Кловский Д. Д., Коржик В. И., Назаров М. В., под ред. Кловского Д. Д. Теория электрической связи, - М.: Радио и связь, 1999 г.

4. Нефедов В. И. Основы радиоэлектроники и связи, - М.: Высшая школа, 2005 г.

5. www.dvo.sut.ru/libr/rts/068shel1/lb5.ru

...





Читайте также:
Основные понятия туризма: Это специалист в отрасли туризма, который занимается...
Решебник для электронной тетради по информатике 9 класс: С помощью этого документа вы сможете узнать, как...
Восстановление элементов благоустройства после завершения земляных работ: Края асфальтового покрытия перед его восстановлением должны...
Методика расчета пожарной нагрузки: При проектировании любого помещения очень важно...

Поиск по сайту

©2015-2022 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:


Мы поможем в написании ваших работ!
Обратная связь
0.014 с.