Общие закономерности деятельности сенсорных систем




Анализаторы выполняют большое количество функций или операции с сигналами.

Среди них важнейшие:

1) обнаружение сигналов;

2) различение сигналов;

3) передача и преобразование сигналов;

4) кодирование поступающей информации;

5) детектирование тех или иных признаков сигналов;

6) опознание образов.

Обнаружение и различение сигналов (1, 2) обеспечивается, прежде всего, рецепторами, а детектирование и опознание (5, 6) сигналов высшими корковыми уровнями анализаторов. Передача, преобразование и кодирование
(3, 4) сигналов свойственны всем слоям анализаторов.

1. Обнаружение сигналов начинается в рецепторах – специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.

2. Различение сигналов. Важной характеристикой того, как сенсорные системы анализируют сигналы, является их способность обнаруживать изменения интенсивности, временных показателей или пространственных признаков стимула. Эти операции анализаторных систем, относящиеся к различению сигналов, начинаются уже в рецепторах, но и следующие анализаторные элементы в нем участвуют. Необходимо обеспечить разную реакцию на минимальное различие между стимулами. Это минимальное различие и есть порог различения (разностный порог, если речь идет о сравнении интенсивностей).

Э. Вебер экспериментально показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, а не на x грамм. Для различения двух источников света по яркости необходимо, чтобы их яркость отличалась на 1/100, а не на x люмен и т. д. В дальнейшем Г. Фехнер (1860) сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя S:

где S – значение интенсивности раздражителя; S0 – нижнее граничное значение интенсивности раздражителя: если S < S0, раздражитель совсем не ощущается; k – константа, зависящая от субъекта ощущения (закон Вебера-Фехнера).

Пространственное различение сигналов основано на различиях в пространственном распределении возбуждения в слое рецепторов и в нервных слоях. Так, если какие-то два раздражителя возбудили два соседних рецептора, то различение этих двух раздражений невозможно, а они будут восприняты как единое целое. Для пространственного различения двух стимулов необходимо, чтобы между возбуждаемыми ими рецепторами находился хотя бы один невозбужденный рецепторный элемент.

Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный последующим стимулом, не попадал в рефракторный период от предыдущего раздражения.

3. Передача и преобразование. После преобразования в рецепторах энергии физического или химического раздражителя в процесс нервного возбуждения начинается цепь процессов по преобразованию и передаче полученного сигнала. Цель их – донести до высших отделов мозга наиболее важную информацию о раздражителе и притом в форме, наиболее удобной для надежного и быстрого его анализа.

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований сигналов можно выделить изменение их масштаба в целом или искажение соотношения разных пространственных частей.

Так, в зрительной и соматосенсорной системах на корковом уровне происходит значительное искажение геометрических пропорций представительства отдельных частей тела или частей поля зрения. В зрительной коре резко расширено представительство центральной ямки сетчатки при относительной редукции периферии поля зрения («циклопический глаз»).

Временные преобразования информации сводятся в основном к ее сжатию в отдельные импульсные посылки, разделенные паузами или интервалами. В целом для всех анализаторов типичным является переход от тонической импульсации нейронов к фазическим пачечным разрядам нейронов.

Ограничение избыточной информации и выделение существенных признаков сигналов. Считают, что одна только зрительная информация, идущая от фоторецепторов, в обычных условиях могла бы за несколько минут насытить все информационные резервы мозга. Поэтому для организма существенной необходимостью является регуляция сенсорных притоков, фильтрация. Имеется несколько механизмов фильтрации: пресинаптическое и постсинаптическое торможение, адаптация, восходящие и нисходящие влияния, нейронные осцилляции и другие. Сенсорные сигналы регулируются в различных условиях: при выполнении движений, регуляции позы, при нейронной обработке зрительной, слуховой, соматосенсорной информации, а также запаха и вкуса. Могут регулироваться даже болевые ощущения. Одним из примеров существенной блокировки сенсорной информации является сон.

Выделяют некоторые механизмы, позволяющие ограничивать избыточность сенсорной информации.

Это, прежде всего сжатие афферентного канала, особенно выраженное в зрительной системе, наличие суживающейся сенсорной воронки, что резко ограничивает количество информации, идущей в высшие зрительные центры.

Другой прием ограничения избыточности информацииподавление или устранение поступления информации о менее существенных явлениях. Природа создала универсальный простой метод отбора: менее важно то, что не изменяется или изменяется медленно как во времени, так и в пространстве, наибольшее значение приобретает градиент изменения сенсорных воздействий. Зачастую именно эта информация наиболее важна для формирования приспособительных поведенческих актов.

4. Кодирование поступающей информации. Кодированием называют процесс преобразования информации в условную форму – код, совершаемый по определенным правилам.

В анализаторных системах позвоночных животных сигналы кодируются двоичным кодом, т. е. наличием или отсутствием залпа импульсов в тот или иной момент времени, в том или ином нейроне.

Такой способ кодирования не единственно возможный и не наиболее выгодный. Его достоинство – помехоустойчивость в связи с крайней простотой. Информация о раздражениях и их параметрах передается у позвоночных животных в виде отдельных групп или «пачек» импульсов («залпов импульсов»).

Возможно кодирование поступающей информации изменением числа волокон, по которым она параллельно передается, а также местом возбуждения в нейронном слое уровне зрительной системы определенной небольшой группы нейронов означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.

На высших уровнях анализаторов происходит переход от преимущественно временного кодирования признаков раздражителя (свойственного периферическим отделам) к преимущественно пространственному (в основном позиционному) коду.

5. Детектирование сигналов – специальный вид избирательного анализа отдельных признаков раздражителя и их конкретного биологического значения. Осуществляют такой анализ специализированные нейроны-детекторы, которые благодаря свойствам своих связей способны реагировать лишь на строго определенные параметры стимула.

Общим в распределении детекторов является иерархический принцип, согласно которому на более низких уровнях локализуются детекторы более простых признаков, обеспечивающие простой анализ. В высших отделах анализатора, как правило, сконцентрированы детекторы более сложных признаков.

6. Опознание образов – конечная и наиболее сложная операция анализатора. Она заключается в классификации образа, отнесении его к тому или иному классу объектов, с которыми ранее встречался организм. Это происходит на основе всей предыдущей обработки афферентного сигнала, после расщепления его нейронами-детекторами на отдельные признаки и их раздельного параллельного анализа. Задача операции опознания может быть сведена к построению мозгом «модели раздражителя» и ее выделению из множества других подобных моделей. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм.

Опознание происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Точно так же знакомый голос опознается при разной его громкости, наличии звукового фона, а смысл речи – и при значительных изменениях ее тембра и темпа. Отсюда следует, что на каких-то высших уровнях анализатора организуется независимое от этих изменений признаков отражение сигнала – сенсорный образ.

Это совокупность сигналов, отображаемых в сходном пространственно-временном распределении процессов возбуждения и торможения на высшем уровне анализатора.

 

4.2. Общий план организации и функции сенсорных
систем

 

Структура и деятельность сенсорных систем весьма сложные. Возбуждение, возникшее в каком-либо рецепторе, проводится в высшие отделы центральной нервной системы несколькими путями.

Во-первых, через так называемый специфический путь, который включает в себя:

1) рецептор;

2) первый чувствительный нейрон, расположенный всегда вне центральной нервной системы – в межпозвоночных спинномозговых ганглиях (от греч. Ganglion – нервный узел, скопление нервных клеток), в полулунном, или Гассеровом, яремном, спиральном и других ганглиях черепно-мозговых нервов;

3) второй нейрон – в спинном, продолговатом или среднем мозге;

4) третий нейрон – в зрительных буграх;

5) четвертый нейрон – в проекционной зоне данного анализатора коры больших полушарий. Кроме этого, в среднем, спинном и продолговатом мозге происходит переключение на пути, ведущие в другие отделы головного мозга, в том числе и мозжечок, ретикулярную формацию и т. д. Из ретикулярной же формации возбуждение может направляться по так называемым неспецифическим путям во все отделы коры больших полушарий (рис. 4.1).

Таким образом, возбуждение, возникшее в каком-либо одном рецепторе, распространяющееся по нервному волокну до первого нейрона, в дальнейшем, в разных отделах нервной системы, переключается на целый ряд нейронов и приходит в высшие отделы, в том числе в кору больших полушарий, по огромному числу различных нервных путей. Запись биотоков показывает, что при раздражении какого-либо рецептора возбуждение вначале регистрируется в проекционной зоне данного вида чувствительности (первичный ответ), а спустя несколько миллисекунд может наблюдаться и в других зонах коры (вторичный ответ).


Рис. 4.1. Общий принцип структуры и функции анализаторных систем

СС – симпатическая система, регулирующая уровень возбудимости рецептора;
К – кора, регулирующая поток информации; Рф – ретикулярная формация,
активирующая кору.

 

Поэтому различение раздражений разных рецепторов (даже в одном и том же анализаторе) обусловлено возникновением в коре больших полушарий различных сложнейших мозаик возбужденных и заторможенных пунктов, охватывающих разные части коры больших полушарий и других отделов мозга.

Анализ раздражителей происходит во всех звеньях анализатора. Первичный анализ осуществляется уже в рецепторах, которые реагируют только на строго определенные раздражители среды: рецепторы сетчатки – на свет, рецепторы внутреннего уха – на звуковые колебания и т. д. Более сложный анализ происходит в спинном мозгу, благодаря чему на тактильные или другие раздражители у спинального животного можно получить локальные ответные реакции. Наиболее сложный анализ осуществляется в корковых, концах сенсорных систем, в различных проекционных зонах коры больших полушарий.

Импульсы, поступающие через анализаторы в центральную нервную систему, поддерживая ее тонус на высоком уровне. При выключении у животных хирургическим путем нескольких сенсорных систем (зрительной, слуховой, вестибулярной, обонятельной) тонус нервной системы снижается, и такие животные почти все время снят.

 

4.3. Классификация сенсорных систем

 

В зависимости от характера раздражителей можно условно разделить все сенсорные системы на несколько групп, реагирующих на следующие виды раздражений:

1) механические (тактильный, болевой, проприоцептивный, или двигательный, вестибулярный анализаторы, барорецептивный сосудистый отдел висцерального, или интероцептивного, анализатора);

2) химические (вкусовой, обонятельный анализаторы, хеморецептивный отдел висцерального анализатора в сосудах, в пищева­рительном тракте и в других органах);

3) световые (зрительный анализатор);

4) звуковые (слуховой анализатор);

5) температурные (температурный анализатор).

По среде, из которой воспринимаются раздражения, сенсорные системы делятся на две главные группы: 1) внешние и 2) внутренние (воспринимающие раздражения со стороны внутренней среды организма).

К внешним сенсорным системам принадлежат зрительная, слуховая, обонятельная, вкусовая и тактильная (осязательная), к внутренним – химическая (реагирующая на изменения химического состава крови и ткани), баростезическая (от греч. baro – тяжесть, aisthesis – ощущение, чувство), реагирующая на изменения давления, например, в кровеносных сосудах.

Температурная, болевая, вестибулярная и двигательная сенсорные системы могут возбуждаться при действии раздражителей как внешней, так и внутренней среды. Так, наряду с температурными рецепторами кожи, реагирующими преимущественно на изменение температуры внешней среды, имеются температурные рецепторы внутри тканей и органов, функционирующие в связи с изменениями температуры внутри организма; рецепторы вестибулярной и двигательной сенсорных систем могут возбуждаться как при действии внешних сил, так и во время перемещения частей или всего тела, обусловленного сокращениями различных мышечных групп.

 

4.4. Основные свойства анализаторов. Пороги
раздражения

 

Важнейшей особенностью рецепторов всех анализаторов является высокая их чувствительность при адекватном раздражении. Адекватные раздражители вызывают возбуждение в рецепторах при минимальной энергии соответствующего агента. Например, в зрительной сенсорной системе возбуждение может возникнуть при действии световой энергии равной 2,5–10-10 эрг/сек. Чтобы 1 мл воды нагреть на 1°, нужно эту энергию накапливать в течение шестидесяти тысяч лет. В звуковой системе порог раздражения может быть еще меньше – 1,6–10-11 эрг/сек. Некоторые химические вещества при действии на обонятельную сенсорную систему также распознаются при весьма малых концентрациях: например, ацетон – 0,4–10-8 г/мл, камфара – 1,6–10-11 г/мл.

Высокая возбудимость ряда рецепторов обусловлена наличием в них особых мембран, чувствительных к стимуляции именно адекватными раздражителями. При действии соответствующих стимулов повышается проницаемость поверхностной мембраны в рецепторах, что вызывает ее деполяри­зацию.

Возникающий при этом рецепторный потенциал, достигая определенной величины, воздействует на окончания нервных волокон, деполяризует их и приводит к последующей передаче возбуждения по этим волокнам в центральную нервную систему. В других рецепторах выделяется медиатор, действующий на разветвления нервных волокон.

Пороги раздражения не являются постоянной величиной, так как и возбудимость рецепторов и состояние нервных клеток сенсорной системы в различных частях нервной системы могут значительно колебаться как в сторону улучшения, так и в сторону ухудшения.

Это обусловлено, во-первых, тем, что высшие нервные центры могут регулировать возбудимость афферентных нейронов на всех уровнях нервной системы. Например, при заторможенности нервной системы, наблюдаемой сразу после сна или в состоянии значительного утомления после работы, пороги раздражения увеличиваются. Наоборот, если нервные центры сенсорной системы находятся в состоянии повышенной возбудимости, пороги раздражения уменьшаются.

Во-вторых, возбудимость самих рецепторов может изменяться в еще большей степени (например, в зрительной системе – в десятки тысяч раз).

Наряду с абсолютными порогами, характеризующимися минимальной энергией, при которой возникает возбуждение, в физиологии сенсорных систем, в том числе в физиологии спорта, часто исследуется разностный (дифференциальный) порог, т. е. разница между двумя интенсивностями раздражения, которая еще воспринимается организмом. Такими порогами являются минимальная разница между различными интенсивностями (давления, растяжения, яркости света, цветовых оттенков, величиной объектов, высотой звуков, углами движений в суставе, скоростью передвижений и пр.) или длительностью действия раздражителя.

 

Адаптация

Фундаментальным свойством всего живого является адаптация (от лат. Adaptation – приспособление), т. е. приспособляемость к условиям внешней среды. Адаптационные процессы охватывают не только рецепторы, но и все звенья сенсорных систем. Адаптация периферических элементов проявляется в том, что пороги возбуждения рецепторов не являются постоянной величиной. Путем повышения порогов возбуждения, т. е. снижения чувствительности рецепторов, происходит приспособление к длительным монотонным раздражениям. Например, человек не ощущает постоянного давления на кожу своей одежды, не замечает непрерывного тиканья часов.

По скорости адаптации к длительным раздражениям рецепторы подразделяют на:

- быстро адаптирующиеся (фазные);

- медленно адаптирующиеся (тонические).

Фазные рецепторы реагируют лишь в начале или при окончании действия раздражителя одним – двумя импульсами (например, кожные рецепторы давления – тельца Пачини), а тонические продолжают посылать в ЦНС неослабевающую информацию в течение длительного времени действия раздражителя (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

При действии раздражителей значительной интенсивности возбудимость анализаторов уменьшается (т. е. пороги раздражения увеличиваются), при воздействиях малой интенсивности возбудимость увеличивается (т. е. пороги уменьшаются).

Изменение порогов раздражения в процессе адаптации наблюдается в условиях действия как сильных, так и слабых раздражителей. Так, снижение чувствительности при раздражении глаза сильным светом говорит о световой адаптации, характеризующейся увеличением порогов раздражения. Темновая адаптация, проявляющаяся в снижении порогов раздражения, наблюдается при действии слабого света. В одних случаях процесс адаптации происходит в течение десятков минут (темновая адаптация при переходе от яркого света к темноте), в других – на протяжении десятков секунд (световая адаптация при переходе от темноты к дневному свету).

В некоторых случаях в результате адаптации раздражители полностью перестают восприниматься. Например, после длительного пребывания в комнате перестают субъективно восприниматься запахи, хорошо различавшиеся при входе в нее.

Адаптация характеризуется известной степенью специализации. Так, при адаптации к действию сильного звука очень высокого тона сохраняется достаточно хорошая чувствительность к действию низких тонов.

Физиологическое значение адаптации во всех анализаторах заключается в установлении оптимального количества сигналов, поступающих в центральную нервную систему. Например, в темноте при действии слабых световых раздражений видимость предметов становится возможной только благодаря повышению чувствительности рецепторов зрительного анализатора. Наоборот, при ярком освещении чувствительность зрительных рецепторов резко снижается, что предупреждает избыточное поступление от них в центральную нервную систему информации, приводящее к ухудшению различения видимых объектов.

Следует отличать пороги ощущения от порогов, при которых возникают физиологические реакции, субъективно не воспринимаемые человеком. Неощущаемые пороги реакций особенно выражены в восприятии ряда вегетативных функций, связанных с регуляцией кровообращения, дыхания, выделительных процессов, пищеварительных и др.

Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремечка) в среднем ухе человека.

 

Иррадиация и индукция

Возбуждение, возникающее в отдельных нервных клетках сенсорной системы, может иррадиировать (от лат. irradiare – сиять), т. е. распространяться на другие нерв­ные клетки того же анализатора.

Иррадиация свойственна всем анализаторам. Например, в зрительной системе она обнаруживается при наблюдении за величиной и формой солнца. Если смотреть на солнце через сильно закопченное стекло, оно кажется круглым пятном определенного размера с рельефно очерченными краями. При постепенном уменьшении степени закопченности стекла солнце утрачивает свою правильную круглую форму, причем кажется, что размеры его сильно увеличиваются. Иррадиация четко проявляется, например, при рассматривании белого квадрата на черном фоне. Одновременная индукция (боковое торможение) является процессом, противоположным иррадиации. Если иррадиация содействует распространению на соседние нервные клетки того же самого процесса (возбуждения или торможения), то одновременная индукция вызывает в них процесс обратным знаком.

Сущность одновременной индукции (от лат. inductio – наведение) в функциях анализаторов заключается в том, что возбуждение нервных клеток каких-либо одних функциональных элементов анализатора одновременно вызывает торможение соседних или взаимосвязанных нервных клеток других функциональных элементов того же анализатора.

Последовательная индукция состоит в том, что после прекращения возбуждения в нервных центрах развивается процесс торможения, а после прекращения торможения – процесс возбуждения.

Последовательную индукцию можно наблюдать, например, при деятельности зрительного анализатора. Если в течение 10–15 сек. смотреть на черный квадрат на белом фоне, затем перевести взор и фиксировать другую точку на этом же белом фоне, то спустя 1–3 сек. (скрытый, или латентный, период) на его месте будет виден в течение некоторого времени (обычно 5–15 сек.) белый квадрат, кажущийся значительно светлее, чем фон. При демонстрации белого квадрата на черном фоне последовательная индукция проявляется в возникновении на черном фоне еще более темного квадрата.

Таким образом, в основе явлений контраста, наблюдаемого при деятельности различных анализаторов, лежат процессы одновременной и последовательной индукции.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: