Содержание
1. Исходные данные 2
2. Выбор типа сети 3
3. Выбор топологии сети 5
4. Выбор типа кабельного соединения 7
4.1 Витая пара 9
4.2 Оптоволоконные кабели 12
5. Организация кампусной сети…………………………………………….13
6. Черновой вариант схематичного плана
соединения устройств сети 14
7. Окончательный вариант схематичного плана соединения
устройств сети 16
8. Расчет корректности сети PVD и PVV 17
9. Экономический расчет 18
10. Заключение 19
Список использованной литературы 20
Исходные данные
Количество рабочих групп (отдельных комнат) 7
Расстояние между соседними группами, (м) 10-15
Число рабочих станций в группе мин/макс 10/ 20
Обеспечиваемый максимальный диаметр сети (м) до 2100
Количество этажей расположения групп в здании 3
Количество зданий 3/150
Тип сети на основе сервера
Выбор типа сети
При принятии решения о выборе типа сети основной вопрос состоит в том, может ли организация позволить себе файловый сервер, сетевую операционную систему и администратора сети. Если да, то можно использовать серверную сетевую среду. Если нет - одноранговая сеть.
Можно организовать одноранговую сеть аналогично серверной, используя для хранения файлов и обслуживания разделяемых ресурсов (например принтеров) один мощный одноранговый компьютер. Это позволит централизованно администрировать ресурсы и выполнять резервное копирование на одной машине. Между тем такой компьютер будет испытывать большую нагрузку, поэтому нужно сделать так, чтобы с ним работало ограниченное число ПК. Используемые таким образом компьютеры называют невыделенными серверами.
Исходя из поставленных условий проектирования (большое число рабочих станций, необходимость расширения, высокий уровень безопасности, большое количество ресурсов и т.д.), правильным решением будет проектирование сети на основе выделенного сервера, что позволит выполнить поставленные требования.
|
Сети на основе сервера наиболее эффективны в том случае, когда совместно используется большое количество ресурсов и данных. Администратор может управлять защитой данных, наблюдая за функционированием сети. В таких сетях может быть один или несколько серверов, в зависимости от объема сетевого трафика, количества периферийных устройств и т.п. Например, в одной сети могут присутствовать DHCP сервер, коммуникационный сервер, сервер баз данных и HTTP сервер.
Характеристики 2 основных типов сетей:
Параметры | Одноранговые сети | Сети на основе сервера |
Размер | Не более 30 компьютеров | Ограничены аппаратным обеспечением сервера(теоретически 2554) |
Защита | Вопрос защиты решается каждым пользователем самостоятельно | Широкая и комплексная защита ресурсов и пользователей |
Администрирование | Вопросами администрирования своего компьютера занимается каждый пользователь. Нет необходимости в отдельном администрировании | Администрирование осуществляется централизовано. Необходим хотя-бы один администратор с сообтетствующим уровнем знаний. |
Если к сети подключено более 30 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом.
|
Рис. 1
С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.
Серверы могут выполнять и некоторые другие задачи: сетевая печать, выход в глобальную сеть, связь с другой локальной сетью, обслуживание электронной почты и т.д. Количество пользователей сети на основе сервера может достигать нескольких тысяч. Одноранговой сетью такого размера просто невозможно было бы управлять.
Преимущества:
1. Разделение ресурсов. Сервер спроектирован так, чтобы предоставлять доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту. Администрирование и управление доступом к данным осуществляется централизованно. Ресурсы, как правило, расположены также централизованно, что облегчает их поиск и поддержку. Например, в системе Windows NT Server разделение каталогов осуществляется через File Manager.
2. Резервное копирование данных. Поскольку жизненно важная информация расположена централизованно, т.е. сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование (backup).
|
3. Избыточность. Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна легко воспользоваться резервной копией.
4. Количество пользователей. Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, было бы невозможно управлять.
5. Аппаратное обеспечение. Так как компьютер пользователя не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя. Типичный компьютер-клиент имеет, по крайней мере, 486-й процессор и от 8 до 16 Мб оперативной памяти.
К недостаткам сети на основе сервера относятся ее громоздкость в случае небольшого количества компьютеров, зависимость всех компьютеров-клиентов от сервера, более высокая стоимость сети вследствие использования дорогого сервера. Но, говоря о стоимости, надо также учитывать, что при одном и том же объеме сетевых дисков большой диск сервера получается дешевле, чем много дисков меньшего объема, входящих в состав всех компьютеров одноранговой сети.
Для обеспечения надежной работы сети при авариях электропитания применяется бесперебойное электропитание сервера. В данном случае это гораздо проще, чем при одноранговой сети, где приходится оснащать источниками бесперебойного питания все компьютеры сети. Сервер может комплектоваться очень простым и дешевым видеомонитором, может даже вообще не иметь его, так как единственная функция этого монитора контроль за запуском сетевого программного обеспечения.
Для администрирования сети в случае сети на основе сервера необходимо выделять специального человека, имеющего соответствующую квалификацию. Централизованное администрирование облегчает обслуживание сети и позволяет оперативно решать все вопросы. Особенно это важно для надежной защиты данных от несанкционированного доступа.
Выбор топологии сети
По заданию курсовой работы необходимо рассчитать локальную сеть на основе сервера. Для решения данной задачи лучше всего использовать топологию «пассивное дерево», т. к. она соответствует требованиям поставленной задачи.
Рис. 2. Топология «пассивное дерево»
Топологию “дерево” можно рассматривать как комбинацию нескольких звезд. Как и в случае звезды, дерево может быть активным, или истинным и пассивным. При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы.
«Звезда» - это топология с явно выделенным центром, к которому подключаются все остальные абоненты. Весь обмен информацией идет исключительно через центральный компьютер, на который таким образом ложится очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом.
Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. Поэтому должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры. Обрыв любого кабеля или короткое замыкание в нем при топологии «звезда» нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.
В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию только в одном направлении. Таким образом, на каждой линии связи имеется только один приемник и один передатчик. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных внешних терминаторов. Проблема затухания сигналов в линии связи также решается в «звезде» проще, чем в «шине», ведь каждый приемник всегда получает сигнал одного уровня.
Серьезный недостаток топологии «звезда» состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. Если в этих пределах подключение новых абонентов довольно просто, то при их превышении оно просто невозможно. Правда, иногда в звезде предусматривается возможность наращивания, то есть подключение вместо одного из периферийных абонентов еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).
Существует топология как активная (истинная) звезда, также топология, называемая пассивной звездой, которая только внешне похожа на звезду. В настоящее время она распространена гораздо больше, чем активная звезда. Достаточно сказать, что она используется в самой популярной на сегодняшний день сети Ethernet.
Рис. 3 Топология «пассивная звезда»
Топология «пассивная звезда». В центре сети с данной топологией помещается не компьютер, а концентратор. Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна истинной или активной звезде, фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а центрального абонента не существует.
Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует.
Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности сети путем простого отключения от центра тех или иных абонентов, а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К каждому периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два кабеля (каждый из них передает в одном направлении), причем вторая ситуация встречается чаще. Такая сеть также допускает простую модификацию и добавление компьютеров, не нарушая остальной ее части. Достаточно проложить новый кабель от компьютера к центральному узлу и подключить его к концентратору. Если возможности центрального концентратора будут исчерпаны, следует заменить его устройством с большим числом портов. В одной сети допускается применение нескольких типов кабелей, если их позволяет использовать концентратор.
Общим недостатком для всех топологий типа «звезда» является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию, то при выборе топологии «звезда» понадобится в несколько раз больше кабеля, чем при топологии «шина». Это может существенно повлиять на стоимость всей сети в целом. При отказе центрального концентратора становится неработоспособной вся сеть. Многие сети с топологией типа "звезда" требуют применения на центральном узле устройства для ретрансляции широковещательных сообщений или коммутации сетевого графика.
Выбор типа кабельного соединения
Средой передачи информации называются те линии связи (или каналы связи), по которым производиться обмен информации между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети.
Информация в локальных сетях чаще всего передается в последовательном коде, то есть бит за битом. Понятно, что такая передача медленнее и сложнее, чем при использовании параллельного кода. Однако надо учитывать то, что при более быстрой параллельной передаче увеличивается количество соединительных кабелей в число раз, равное количеству разрядов параллельного кода (например, в 8 раз при 8-разрядном коде). Это совсем не мелочь, как может показаться на первый взгляд. При значительных расстояниях между абонентами сети стоимость кабеля может быть вполне сравнима со стоимостью компьютеров и даже превосходить ее. К тому же проложить один кабель (реже два разнонаправленных) гораздо проще, чем 8,16 или 32. Значительно дешевле обойдется также поиск повреждений и ремонт кабеля.
Но это еще не все. Передача на большие расстояния при любом типе кабеля требует сложной передающей и приемной аппаратуры: для этого надо формировать мощный сигнал на передающем конце и детектировать слабый сигнал на приемном конце. При последовательной передаче для этого требуется всего один передатчик и один приемник. При параллельной же передаче количество передатчиков и приемников возрастает пропорционально разрядности используемого параллельного кода. Поэтому даже при разработке сети незначительной длины (порядка десятка метров) чаще всего все равно выбирают последовательную передачу.
К тому же при параллельной передаче чрезвычайно важно, чтобы длины отдельных кабелей были точно равны друг другу, иначе в результате прохождения по кабелям разной длины между сигналами на приемном конце образуется временной сдвиг, который может привести к сбоям в работе или даже к полной неработоспособности сети. Например, при скорости передачи 100 Мбит/с и длительности бита 10 не этот временной сдвиг не должен превышать 5-10 нс. Такую величину сдвига дает разница в длинах кабелей в 1-2 метра. При длине кабеля 1000 метров это составляет 0,1-0,2%.
Правда, в некоторых высокоскоростных локальных сетях все-таки используют параллельную передачу по 2-4 кабелям, что позволяет при заданной скорости передачи применять более дешевые кабели с меньшей полосой пропускания, но допустимая длина кабелей при этом не превышает сотни метров. Примером может служить сегмент 100BASE-T4 сети Fast Ethernet.
Промышленностью выпускается огромное количество типов кабелей, например, крупнейшая кабельная фирма Belden предлагает более 2000 их наименований. Все выпускаемые кабели можно разделить на три большие группы:
1. кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные (shielded twisted pair, STP) и неэкранированные (unshielded twisted pair, UTP);
2. коаксиальные кабели (coaxial cable);
3. оптоволоконные кабели (fiber optic).
Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе типа кабеля надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию. В настоящее время действует стандарт на кабели EIA/TIA 568 (Commercial Building Telecommunications Cabling Standard), принятый в 1995 году и заменивший все действовавшие ранее фирменные стандарты.
В данной работе используются два типа кабеля:
· Кабель UTP (Кабель UTP cat.5 4 пары (100 м) NEOMAX Taiwan)
· Кабель ОВ (Кабель внутренний двужильный 62,5/125 многомод. ММ, 1м)
Повторители, соединенные по стандарту 10Base-FB, при отсутствии кадров для передачи постоянно обмениваются специальными последовательностями сигналов, отличающимися от сигналов кадров данных, для поддержания синхронизации. Поэтому они вносят меньшие задержки при передаче данных из одного сегмента в другой, и это является главной причиной, по которой количество повторителей удалось увеличить до 5. В качестве специальных сигналов используются манчестерские коды J и К в следующей последовательности: J-J-K-K-J-J-... Эта последовательность порождает импульсы частоты 2,5 МГц, которые и поддерживают синхронизацию приемника одного концентратора с передатчиком другого. Поэтому стандарт l0Base-FB имеет также название синхронный Ethernet.
Витая пара
Витые пары проводов используются в самых дешевых и на сегодняшний день, пожалуй, самых популярных кабелях. Кабель на основе витых пар представляет собой несколько пар скрученных изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки.
Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также слабой защищенностью от подслушивания с целью, например, промышленного шпионажа. Перехват передаваемой информации возможен как с помощью контактного метода (посредством двух иголочек, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Для устранения этих недостатков применяется экранирование.
Рис. 4 Кабель с витыми парами
В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку- экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk - перекрестные наводки). Естественно, экранированная витая пара гораздо дороже, чем неэкранированная, а при ее использовании необходимо применять и специальные экранированные разъемы, поэтому встречается она значительно реже, чем неэкранированная витая пара.
Основные достоинства неэкранированных витых пар - простота монтажа разъемов на концах кабеля, а также простота ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Например, при заданной скорости передачи затухание сигнала (уменьшение его уровня по мере прохождения по кабелю) у них больше, чем у коаксиальных кабелей. Если учесть еще низкую помехозащищенность, то становится понятным, почему линии связи на основе витых пар, как правило, довольно короткие (обычно в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 100 Мбит/с и ведутся работы по повышению скорости передачи до 1000 Мбит/с.
Согласно стандарту EIA/TIA 568, существуют пять категорий кабелей на основе неэкранированной витой пары (UTP):
Кабель категории 1 - это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь, но не данные. Данный тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).
Кабель категории 2 - это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт EIA/TIA 568 не различает кабели категорий 1 и 2.
Кабель категории 3 - это кабель для передачи данных в полосе часто до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей. Сейчас он имеет наибольшее распространением
Кабель категории 4 - это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом. Кабель был разработан для работы в сетях по стандарту IEEE 802.5.
Кабель категории 5 - самый совершенный кабель в настоящее время, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высоко скоростных сетях типа Fast Ethernet и TPFDDI. Кабель категории 5 примерно на 30.-50% дороже, чем кабель категории 3.
Кабель категории 6 - перспективный тип кабеля для передачи данных в полосе частот до 200 МГц.
Кабель категории 7 - перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.
Согласно стандарту EIA/TIA 568, полное волновое сопротивление наиболее совершенных кабелей категорий 3, 4 и 5 должно составлять 100 Ом ± 15% в частотном диапазоне от частоты 1 МГц до максимальной частоты кабеля. Требования не очень жесткие: величина волнового сопротивления может находиться в диапазоне от 85 до 115 Ом. Здесь же отметим, что волновое сопротивление экранированной витой пары STP должно быть по стандарту равно 150 Ом ± 15%. Для согласования импедансов кабеля и оборудования в случае их несовпадения применяют согласующие трансформаторы (Balun). Встречается также экранированная витая пара с волновым сопротивлением 100 Ом, но довольно редко.
Второй важнейший параметр, задаваемый стандартом, - это максимальное затухание сигнала, передаваемого по кабелю, на разных частотах.
Еще один специфический параметр, определяемый стандартом - это величина так называемой перекрестной наводки на ближнем конце (NEXT -Near End Crosstalk). Он характеризует влияние разных проводов в кабеле друг на друга. В таблице 1 представлены значения допустимой перекрестной наводки на ближнем конце для кабелей категорий 3, 4 и 5 на различных частотах сигнала. Естественно, более качественные кабели обеспечивают меньшую величину перекрестной наводки.
Таблица 1. Допустимые уровни перекрестных наводок.
Частота, МГц | Перекрестная наводка на ближнем конце, дБ | |||
Категория 3 | Категория 4 | Категория 5 | ||
0,150 | -54 | -68 | -74 | |
0,772 | -43 | -58 | -64 | |
1,0 | -41 | -56 | -62 | |
4,0 | -32 | -47 | -53 | |
8,0 | -28 | -42 | -48 | |
10,0 | -26 | -41 | -47 | |
16,0 | -23 | -38 | -44 | |
20,0 | - | -36 | -42 | |
25,0 | - | - | -41 | |
31,25 | - | - | -40 | |
62,5 | - | - | -35 | |
100,0 | - | - | -32 | |
Стандарт определяет также максимально допустимую величину рабочей емкости каждой из витых пар кабелей категории 4 и 5. Она должна составлять не более 17 нФ на 305 метров (1000 футов) при частоте сигнала 1 кГц и температуре окружающей среды 20°С.
Чаще всего, витые пары используются для передачи данных в одном направлении, то есть в топологиях типа «звезда» или «кольцо». Топология «шина» обычно ориентируется на коаксиальный кабель. Поэтому внешние терминаторы, согласующие неподключенные концы кабеля, для витых пар практически никогда не применяются.
Кабели выпускаются с двумя типами внешних оболочек:
кабель в поливинилхлоридной (ПВХ, PVC) оболочке дешевле и предназначен для работы кабеля в сравнительно комфортных условиях эксплуатации;
кабель в тефлоновой оболочке дороже и предназначен для более жестких условий эксплуатации.
Кабель в ПВХ-оболочке называется еще non-plenum, а кабель в тефлоновой оболочке - plenum. Термин plenum обозначает пространство под фальшполом и над подвесным потолком, где очень удобно размещать кабели сети. Для прокладки в этих скрытых от глаз пространствах как раз удобнее кабель в тефлоновой оболочке, который, в частности, горит гораздо хуже, чем ПВХ-кабель, и не выделяет при горении так много ядовитых газов.
Еще один важный параметр любого кабеля, который жестко не определяется стандартом, но может существенно повлиять на работоспособность сети, - это скорость распространения сигнала в кабеле, то есть задержка распространения сигнала в кабеле в расчете на единицу длины.
Производители кабелей иногда указывают величину задержки на метр длины, а иногда скорость распространения сигнала относительно скорости света (или NVP - Nominal Velocity of Propagation, как ее часто называют в документации). Связаны эти две величины простой формулой:
,
где величина задержки на метр длины кабеля в наносекундах. Например, если NVP=0,65 (65% от скорости света), то задержка t будет равна 5,13 нс/м. Типичная задержка большинства современных кабелей составляет около 5 нс/м.
Стандартный сегмент Ethernet на основе l0BaseT (витая пара) имеет следующие спецификации:
Максимально допустимое число сегментов 1024
Максимальное число сегментов с узлами 1024
Максимальная длина сегмента 100м
Максимальное число узлов на сегмент 2
Максимальное число узлов в сети 1024
Максимальное число концентраторов в цепочке 4
Оптоволоконные кабели
Оптоволоконный (он же волоконно-оптический) кабель – это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное оптоволокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.
Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции стеклянная или пластиковая оболочка, не позволяющая свету выходить за переделы стекловолокна.
Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, что несравнимо выше, чем у любых электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается. Однако необходимо применение специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200МГц) его преимущества перед электрических кабелем неоспоримы, он просто не имеет конкурентов.
Однако оптоволоконный кабель имеет и некоторые недостатки. Самый главный из них – высокая сложность монтажа. Оптоволоконный кабель менее прочен, чем электрический, и менее гибкий. Чувствителен он и к ионизирующим излучениям, из-за которого снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Чувствителен он также к резким перепадам температуры, в результате которых стекловолокно может треснуть. Как правило, оптоволоконные кабели используют для передачи данных в одном направлении, между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может не дойти до конца.
Существует два различных типа оптоволоконных кабелей:
многомодовый, или мультимодовый, кабель, более дешевый, но менее качественный;
одномодовый кабель, более дорогой, но имеющий лучшие характеристики.
Основные различия между этими типами связанны с разным режимом прохождения световых лучей в кабеле.
В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны.
Задержка распространения сигнала в оптоволоконном кабеле не сильно отличается от задержки в электрических кабелях. Типичная величина задержки для наиболее распространенных кабелей составляет около 4-5 нс/м.