Апериодическое (инерционное) звено




Усилительное (пропорциональное) звено

y (t)= k п x (t)

Переход к передаточной функции:

Y (p)= k п X (p)

Импульсная характеристика:

k (t)= k пδ(t) = L -1{ W (p)}.

Переходная характеристика:

h (t)= k п1(t) = L -1{ W (p)}.

Рис 6.1 – Переходная характеристика усилительного звена

АФХ:

.

,

Рис.6.2 АФХ

АЧХ:

Рис.6.3 АЧХ

ФЧХ:

Рис.6.4 ФЧХ

ЛАЧХ:

L (ω)=20 lg k п

 

 

Интегрирующее звено

ДУ:

ПФ:

Примеры.

Рис. 6.5. Примеры интегрирующих звеньев: а- электродвигатель постоянного тока; б- резервуар с входным трубопроводом

ИХ: k(t)=k 1(t)

Рис. 6.6. Импульсная характеристика интегрирующего звена

ПХ: h(t)=k t

Рис. 6.7. Переходная характеристика интегрирующего звена

Построим частотные характеристики, имеем передаточную функцию:

Отсюда

,

где ; P (ω)=0.

АФХ:

При изменении частоты ω от 0 до ∞ конец вектора W (jω) движется по отрицательной части мнимой оси от -∞ до 0.

Рис. 6.8. АФХ интегрирующего звена

Интегрирующее звено создает отставание гармонического сигнала на 900 на всех частотах ω (рис.6.9).

ФЧХ:

Рис. 6.9. ФЧХ интегрирующего звена

Амплитуда выходного сигнала уменьшается с возрастанием частоты (рис. 6.10).

Рис. 6.10. АЧХ интегрирующего звена

Для ЛАЧХ:

(6.1)

В зависимости (6.1) график – прямая линия, поскольку

,

так как ось абсцисс –lgω. Построим (1).

Пусть ω = 0, тогда

L(0)=20 lg k – 20lg1=20lg k.

Пусть ω = 10, тогда

L(10)=20 lg k – 20lg10=20lg k-20.

Таким образом, имеем график:

Рис. 6.11. ЛАЧХ и ЛФЧХ интегрирующего звена

Из этого рисунка видно, что при изменении на одну декаду значение ЛАЧХ изменится на -20дБ. Следовательно, она имеет вид прямой.

 

Апериодическое (инерционное) звено

ДУ имеет вид:

ПФ:

Следовательно:

Величины k и T соответственно называются коэффициентом усиления и постоянной времени апериодического звена.

Примеры апериодических звеньев.

Рис. 6.12. Примеры апериодических звеньев:

а – электрический RC-фильтр; б – резервуар со сжатым газом; в – процесс закалки детали в жидкости

Поскольку

то

ДУ можно записать в виде:

Структурная схема апериодического звена (рис.6.13)

Рис.6.13. Структурная схема апериодического звена

По известным формулам достаточно просто получить зависимости, определяющие импульсную и переходную характеристики:

, t >0

, t >0

ИХ и ПХ представлены на рис. 6.14 и 6.15.

Рис. 6.14. Импульсная характеристика апериодического звена

Рис. 6.15. Переходная характеристика апериодического звена

Перепишем переходную характеристику в виде:

Первая составляющая – это установившейся процесс, второй член обусловлен полюсами ПФ и является собственным движением. Функция уменьшается до менее чем 2 % от своего начального значения за 4Т и менее чем 1 % – за 5T. На практике обычно считают, что экспонента уменьшается о нуля за время 4T до 5 T. Таким образом, можно считать, что реакция системы на y(t)=1(t) практически заканчивается через(4..5)T и, следовательно, Т [с] является мерой быстродействия.

Найдем частотные характеристики. Имеем следующую зависимость:

АФХ:

И имеет вид:

Рис. 6.16. АФХ апериодического звена

Выражение для АЧХ запишется в виде:

ФЧХ:

Графики АФХ и ФЧХ представлены на рис.6.17.

Рис. 6.17. АФХ и ФЧХ апериодического звена

ЛАЧХ определяется формулой

,

где – частота сопряжения.

Рассмотрим три случая:

1. ; тогда можно записать

2. ; тогда

 

3. Рассмотрим, чему равна L (ω) при ω=ω1 и ω=10 ω1. Пусть ω=ω1, тогда находим

Пусть ω=10ω1, тогда

ЛАЧХ представлена на рисунке 6.18

Рис. 6.18 – Приближенная (асимптотическая) ЛАЧХ апериодического звена

 

Рис. 6.19 – ЛАЧХ и ЛФЧХ апериодического звена

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: