Материалы с сетчатой структурой




Введение

 

Сейчас с уверенностью можно утверждать, что одним из наиболее перспективных, а также многообещающих направлений развития современной науки является нанотехнология. Исходя из самого названия „нанотехнология“ можно заключить, что данное научное направление работает с объектами, размеры которых измеряются нанометрами. Один нанометр (от греческого «нано» — карлик) равен одной миллиардной части метра. На этом расстоянии можно вплотную расположить примерно 10 атомов. Пожалуй, первым ученым, использовавшим эту единицу измерения, был Альберт Эйнштейн, который в 1905 г. теоретически доказал, что размер молекулы сахара равен одному нанометру. Но только через 26 лет немецкие физики Эрнст Руска, получивший Нобелевскую премию в 1986 г., и Макс Кнолл создали электронный микроскоп, обеспечивающий 15-кратное увеличение (меньше, чем существовавшие тогда оптические микроскопы), он и стал прообразом нового поколения подобных устройств, позволивших заглянуть в наномир.

Если говорить о полимерных композиционных материалах, то здесь следует начать с определения понятия „композиционный материал“. По определению, композиционными называют материалы, состоящие из двух или более фаз с четкой межфазной границей системы, которые содержат усиливающие (армирующие) элементы (волокна, пластины, частицы) с различным отношением длины к сечению (что и создает усиливающий эффект), погруженные в полимерную матрицу. Механические свойства композиционного материала в большой степени зависят от межфазного взаимодействия между полимерной матрицей и армирующими элементами, то есть от величины адгезии. Естественно, чем выше адгезия полимерной матрицы к армирующим элементам, тем прочность композита будет выше. Если же говорить о нанокомпозиционных полимерных материалах, то использовать определение „армирующий наполнитель“ применительно к наночастицам не совсем верно. В нанокомпозитах наночастицы взаимодействуют с полимерной матрицей не на макро– (как в случае с композиционными материалами), а на молекулярном уровне. В следствие такого взаимодействия образуется композиционный материал, обладающий высокой адгезионной прочностью полимерной матрицы к наночастицам. Следует отметить, что нанокомпозиция имеет упорядоченную внутреннюю структуру.

Композиционными называют материалы, состоящие из двух или более фаз с четкой межфазной границей системы, которые содержат усиливающие (армирующие) элементы (волокна, пластины, частицы) с различным отношением длины к сечению (что и создает усиливающий эффект), погруженные в полимерную матрицу.

Кроме того, для получения полимерного композиционного материала с заданными механическими, химическими, диэлектрическими или же теплофизическими свойствами необходимо было ввести в полимерную матрицу определенное количество модифицирующего наполнителя. Причем если говорить о композиционных материалах, армированных макроэлементами, то, как правило, количество вводимого в полимер наполнителя исчислялось десятками массовых процентов. В случае нанокомпозитов речь идет о гораздо меньших количествах вводимого модифицирующего наполнителя. В качестве примера можно привести создание композита на полимерной основе с наполнителем из наночастиц серебра. При концентрации серебра всего в несколько десятитысячных долей процента композит проявляет необычайно сильное бактерицидное действие.

Однако уникальные свойства наноматериалов затрудняют их получение. Избыточная поверхностная энергия заставляет наночастицы слипаться, агрегироваться. Кроме того, наночастицы химически активны и при взаимодействии с другими веществами часто теряют свои уникальные свойства. Таким образом, нельзя получить нанокомпозиционный полимерный материал по известным и отработанным технологиям.

Технология получения нанокомпозиционного материала в первую очередь зависит от типа наночастиц, которые вводятся в полимер. Так, при получении нанокомпозитов на основе различной керамики и полимеров применяется зольгель-технология, в которой исходными компонентами служат алкоголяты некоторых химических элементов и органические олигомеры. Сначала алкоголяты подвергают гидролизу, а затем проводят реакцию поликонденсации гидроксидов. В результате образуется керамика из неорганической трехмерной сетки. Существует также метод синтеза, в котором полимеризация и образование неорганического стекла протекают одновременно. Возможно применение нанокомпозитов на основе керамики и полимеров в качестве специальных твердых защитных покрытий, а также как оптические волокна.

 

Композиционные материалы — изотропный и ориентированный — и их характерные свойства при разных наполнителях: стекло- (СВ), углеродно- (УВ) и арамидноволоконном (АВ).


1.Нанокомпозиты из керамики и полимеров

 

Основные структурные параметры наночастиц — их форма и размер. Физические, электронные и фотофизические свойства наночастиц и кластеров, определяемые их чрезвычайно высокой удельной поверхностью (отношением поверхности к объему), значительно отличаются от свойств как блочного материала, так и индивидуальных атомов. Например, если размер кристалла золота уменьшается до 5 нм, температура плавления снижается на несколько сотен градусов. Свойства конечного нанокомпозиционного материала зависят от природы взаимодействия между фазами и строения межфазных областей, объемная доля которых чрезвычайно велика.

Очень многие материалы — от металлов и керамик до биоминералов — состоят из неорганических наночастиц (оксидов, нитридов, карбидов, силикатов и т.д.). Они входят в состав и нанокомпозитов на основе различной керамики и полимеров. Несовместимость этих неорганических и органических компонентов — основная проблема, которую приходится преодолевать при создании таких материалов. Чрезвычайно важно также контролировать в них степень микрофазного разделения.

 

Материалы с сетчатой структурой

 

Наибольшие успехи в получении этих нанокомпозитов были достигнуты золь-гель технологией, в которой исходными компонентами служат алкоголяты некоторых химических элементов и органические олигомеры.

Сначала алкоголяты кремния (титана, циркония, алюминия или бора) подвергают гидролизу

 

Si(OR)4 + H2O ЬЮ (OH)Si(OR)3 +ROH

(OH)Si(OR)3 + H2O ЬЮ (OH)2Si(OR)2 +ROH

(OH)2Si(OR)2 + H2O ЬЮ (OH)3Si(OR) +ROH

(OH)3Si(OR) + H2O ЬЮ Si(OH)4 +ROH,

 

а затем проводят реакцию поликонденсации гидроксидов

 

єSi-OR + HO-Siє ЬЮ єSi-O-Siє + ROH

єSi-OH + HO-Siє ЬЮ єSi-O-Siє + HOH.

 

В результате образуется керамика из неорганической трехмерной сетки. Поскольку золь-гель реакция, протекающая обычно в спиртовых растворах мономера и алкоголятов неорганического предшественника М(OR)n, не требует высокой температуры, в реакционные схемы удается включать органические соединения как в виде активных олигомеров, так и готовых полимеров.

В качестве органического компонента используют многие соединения (полистирол, полиимид, полиамид, полибутадиен и полиметилметакрилат) и в зависимости от условий реакции и содержания компонентов получают материалы с разной надмолекулярной организацией. Можно создать, скажем, высокодисперсные нанокомпозиты на основе полидиметилсилоксана и тетраэтоксисилана с включенными в неорганическую сетку олигомерами.

Вообще методов проведения золь-гель реакции несколько. Дж.Марк, например, предложил осуществлять гидролиз и конденсацию в набухшей полимерной матрице. В ходе такой реакции образуются взаимопроникающие органическая и керамическая сетки, что обеспечивает уникальные механические свойства конечного материала.

Существует также метод синтеза, в котором полимеризация и образование неорганического стекла протекают одновременно. За счет этого расширяется класс используемых мономеров, кроме того, при сушке конечного продукта не происходит заметной усадки, как в способе Марка.

Нанокомпозиты на основе полимеров и керамик сочетают в себе качества составляющих компонентов: гибкость, упругость, перерабатываемость полимеров и характерные для стекол твердость, устойчивость к износу, высокий показатель светопреломления. Благодаря такому сочетанию улучшаются многие свойства материала по сравнению с исходными компонентами. Такие нанокомпозиты еще не приобрели коммерческой ценности. Однако очевидно, что в ближайшее время они найдут применение в качестве специальных твердых защитных покрытий и для неорганических, и для полимерных материалов, а также как световоды и оптические волокна, адгезивы, адсорбенты и, наконец, как новые конструкционные материалы.

 

Слоистые нанокомпозиты

 

Их тоже создают на основе керамики и полимеров, но с использованием природных слоистых неорганических структур, таких как монтмориллонит или вермикулит, которые встречаются, например, в глинах. Слой монтмориллонита толщиной ~1нм в ходе реакции ионного обмена насыщают мономерным предшественником с активной концевой группой (e-капролактамом, бутадиеном, акрилонитрилом или эпоксидной смолой), а затем проводят полимеризацию.

 

Слоистые нанокомпозиты на основе алюмосиликата и поли мера с низким его содержанием (справа вверху) и высоким.

Так получают слоистые нанокомпозиты с высоким содержанием керамики. Эти материалы характеризуются высокими механическими свойствами, термической и химической стабильностью. Но даже и небольшое количество алюмосиликата значительно улучшает механические и барьерные свойства полимера. Так, по сравнению с чистым полиимидом влагопроницаемость полиимидного нанокомпозита, содержащего всего 2 мас.% силиката, снижается на 60%, а коэффициент термического расширения — на 25%. Отметим, основная проблема при создании слоистых нанокомпозитов на основе глин и тому подобных керамик — обеспечить равномерное раскрытие слоистых структур и распределение мономера по материалу.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: