X. Радиационная безопасность




1. Общие сведения об ионизирующих излучениях

Радиационная опасность обусловлена воздействием на окружающую среду ионизирующих излучений, которые составляют часть общего понятия – радиация, включающего в себя также радиоволны, видимый свет, ультрафиолетовое и инфракрасное излучения.

Ионизирующим называется излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. К ним относятся:

1) a, b, g - излучения, обусловленные естественной и искусственной радиоактивностью химических элементов;

2) рентгеновские излучения, создающиеся в рентгеновских аппаратах, а также образующиеся при радиоактивном распаде ядер некоторых элементов;

3) потоки нейронов и g - квантов, возникающих при ядерных реакциях деления и синтеза;

4) излучения, генерируемые на ускорителях;

5) излучения, приходящие из космоса и т.д.

Различают корпускулярное и фотонное ионизирующие излучения.

Корпускулярное излучение – поток элементарных частиц с массой покоя, отличной от нуля (a и b - частицы, нейтроны, протоны, электроны и др.). Кинетическая энергия этих частиц достаточна для ионизации атомов при столкновении – называется непосредственно ионизирующим излучением.

Фотонное излучение – электромагнитное излучение. К нему относятся: g - излучение, возникающее при изменении энергетического состояния ядер; тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц; характеристическое излучение, возникающее при изменении энергетического состояния электронов атома; рентгеновское излучение, состоящее из тормозного и (или) характеристического излучения. Фотоны имеют массу покоя, равную нулю.

Фотонное излучение, а также нейтроны и другие незаряженные частицы непосредственно ионизацию не производят, но в процессе взаимодействия со средой они высвобождают заряженные частицы, способные ионизировать атомы и молекулы данной среды. Поэтому его еще называют косвенно ионизирующим излучением.

Частицы корпускулярного излучения и фотоны принято называть ионизирующими частицами.

 

Радиоактивность – свойство неустойчивых атомных ядер одних химических элементов самопроизвольно превращаться в ядра атомов других химических элементов с испусканием одной или нескольких ионизирующих частиц. Процесс такого спонтанного ядерного превращения называется радиоактивным распадом. При этом образовавшееся новое (дочернее) ядро оказывается в более устойчивом состоянии, чем исходное материнское.

Радиоактивность может быть естественной и искусственной.

Естественная радиоактивность наблюдается у существующих в природе неустойчивых изотопов (расположены в Периодической системе за свинцом).

Искусственной называется радиоактивность изотопов, полученных в результате ядерных реакций в ядерных реакторах, на ускорителях, при ядерных взрывах и др.

 

2. Основные характеристики радиоизотопов

 

Основными характеристиками радиоизотопов (радионуклидов) являются:

1. Активность.

2. Тип (способ) распада.

3. Период полураспада.

4. Вид и энергия излучения.

Активность радионуклида А в источнике (образце) есть отношение числа dN спонтанных ядерных превращений, происходящих в источнике (образце) за интервал времени dt, к этому интервалу:

А= dN/dt.

Единица активности радионуклида в СИ - Беккерель (Бк). Беккерель равен активности радионуклида в источнике (образце), в котором за 1с происходит одно спонтанное ядерное превращение. Внесистемная единица активности - Кюри (Кu), при этом 1 Кu=3,7×1010 Бк.

Активность радионуклида с течением времени уменьшается по закону радиоактивного распада:

где А(t), А0 - активность нуклида в источнике в текущий и начальный (t=0) моменты времени соответственно;

- постоянная распада, имеющая смысл вероятности распада ядра за 1 секунду и равная доле ядер, распадающихся за единицу времени;

T1/2 - период полураспада - время, в течение которого распадается половина первоначального количества ядер, при этом активность радионуклида уменьшается в 2 раза.

 

 

Для смеси радионуклидов суммарная активность определяется из уравнения:

где A oi - активность i-го нуклида в момент времени t=0;

li - постоянная распада i-го нуклида.

Каждый радионуклид распадается вполне определенным способом, при этом распад ядер сопровождается испусканием:

·a-частиц (ядер атомов гелия) при a-распаде,

· b- - частиц (электронов) - при электронном (b-) - распаде,

· b+ - частиц (протонов) - при протонном (b+) - распаде и др.

Образующиеся в результате указанных распадов дочерние ядра, как правило, оказываются возбужденными. Снятие энергии возбуждения и переход дочернего ядра в основное (стабильное) или менее возбужденное состояние происходит путем испускания гамма-кванта (фотона).

Переход ядра из возбужденного состояния в невозбужденное с испусканием g-излучения называется изомерным переходом.

Фотон может и не вылетать из атома, а поглотиться одним из электронов внутренних оболочек, который в результате перейдет в свободное состояние. Это явление называется внутренней конверсией g-лучей. Электроны, образовавшиеся вследствие такого внутреннего фотоэффекта, называются конверсионными.

В ряде случаев вся энергия g-излучения расходуется на явление внутренней конверсии и вместо вылета фотонов из атома наблюдается вылет только электронов конверсии. Внутренняя конверсия сопровождается испускание рентгеновского характеристического излучения.

Таким образом, радиоактивный распад сопровождается испусканием корпускулярных частиц (a, b+, b-, конверсионные электроны) и фотонов.

 

3. Взаимодействие ионизирующих излучений с веществом

При прохождении ионизирующей частицы (корпускулярной или фотона) через вещество оно может испытать рассеяние, поглощение (захват), деление или пройти вещество без взаимодействия. Вероятность элементарных актов взаимодействия зависит от вида частиц, их энергии и атомного номера (заряда элемента – порядковый номер химического элемента в периодической таблице) материала среды.

Различают упругое и неупругое взаимодействие.

При упругом взаимодействии (аналогичном столкновению бильярдных шаров) природа частиц не изменяется и их суммарная энергия до и после взаимодействия остается постоянной, происходит только перераспределение энергии между взаимодействующими частицами. Возможен и такой случай упругого взаимодействия, когда энергия каждой их взаимодействующих частиц не изменяется, а изменяется только направление их движения.

При неупругом взаимодействии природа частиц также не изменяется, но их суммарная кинетическая энергия после взаимодействия оказывается меньше. Часть энергии затрачивается на производство какой-либо работы (нагревание среды, возбуждение или ионизация атомов, излучение и т.д.).

В процессе взаимодействия возможно и изменение природы частиц в результате протекания ядерных реакций, рождения и аннигиляции частиц и т.п.

 

 

4. Дозиметрические величины

Результатом воздействия ионизирующих излучений на облучаемые объекты являются различные радиационные эффекты - обратимые и необратимые физико-химические или биологические изменения в этих объектах, зависящие от величины воздействия и условий облучения.

Физические величины, функционально связанные с радиационным эффектом, называются дозиметрическими.

Основной физической величиной, определяющей степень радиационного воздействия, является поглощенная доза ионизирующего излучения D - отношение средней энергии , переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:

Единица поглощенной дозы в СИ - грей (Гр). Грей равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения, равная 1 Дж, т.е. 1Гр = 1Дж/кг. Внесистемной единицей поглощенной дозы ионизирующего излучения является рад (рад). Рад равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1кг передается энергия ионизирующего излучения, равная 100 эрг. Таким образом, 1рад = 0,01Гр.

Поглощенная доза ионизирующего излучения является мерой ожидаемых последствий облучения объектов как живой, так и неживой природы. Она не зависит от вида ионизирующего излучения (a, b, g, X, n и др.) и его энергии, но для одного и того же вида и энергии излучения зависит от вида вещества.

Поэтому, когда говорят о поглощенной дозе, необходимо указывать, к какой среде это относится: к воздуху, воде или другой среде.

В повседневной жизни человек подвергается хроническому облучению естественными и искусственными источниками ионизирующих излучений в малых дозах. Установлено, что в этом случае биологический эффект облучения зависит от суммарной поглощенной энергии и вида (качества) излучения.

По этой причине для оценки радиационной безопасности при хроническом облучении человека в малых дозах, т.е. дозах, не способных вызвать лучевую болезнь, используется эквивалентная доза ионизирующего излучения Hт - произведение «тканевой дозы» (дозы на орган) Dт на взвешивающий коэффициент wR для излучения R:

Hт= wR× Dт.

При этом доза на орган - средняя поглощенная доза в определенной ткани или органе человеческого тела задается в виде:

где mт - масса ткани или органа,

D - поглощенная доза в элементе dm.

Если в пределах органа или ткани D=const, то Dт= D.

Если поле излучения состоит из нескольких излучений с различными значениями wR, то эквивалентная доза определятся в виде:

Единица эквивалентной дозы в СИ - зиверт (Зв).

Зиверт равен эквивалентной дозе, при которой произведение поглощенной дозы в биологической ткани стандартного состава на взвешивающий коэффициент wR равно 1Дж/кг. Следовательно, 1Зв=1Гр/ wR

. Внесистемной единицей эквивалентной дозы ионизирующего излучения является бэр (бэр). Бэр равен эквивалентной дозе, при которой произведение поглощенной дозы в биологической ткани стандартного состава на взвешивающий коэффициент wR равно 100 эрг/г. Таким образом, 1 бэр=0,01 Зв=1рад/ wR.

Безразмерная единица коэффициента wR в СИ - зиверт на грей (Зв/Гр), во внесистемных единицах - бэр на рад (бэр/рад).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-12-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: