Математические сведения.




Этот параграф является математическим введением к тому динами­ческому рассмотрению волн, которое будет дано в $2. Рассмотрим произвольную функцию

f(at-bx) (2.3) от аргумента аt—bх. Продифференцируем ее дважды по t:

(2.4)

Здесь штрих означает дифференцирование по аргументу at—bx. Продифференцируем теперь нашу функцию дважды по х:

(2.5)

Сравнивая (2.4) и (2.5), мы убеждаемся, что функция (2.3) удовлетво­ряет уравнению

(2.6)

где

u=a/b.

Легко видеть, что этому же уравнению удовлетворяет произвольная функция

f(at+bx) (2.7) (2.7) аргумента at+bx, а также сумма функций вида (2.3) и (2.7).

Функции (2.3) и (2.7) изображают при положительных a, b пло­ские волны, распространяющиеся, не деформируясь, со скоростью и в сто­рону соответственно возрастающих или убывающих значений х **).

Уравнение (2.6)—дифференциальное уравнение в частных производ­ных, играющее в физике очень важную роль. Оно называется волновым уравнением. В математических курсах доказывается, что оно не имеет решений, отличных от тех, которые могут быть представлены функциями вида (2.3) и (2.7) или суперпозицией таких функций, например,

f1(at - bх) + f2(at+bx).

Всякий раз, когда из физических соображений можно установить, что та или иная физическая величина s удовлетворяет уравнению вида

(2.6а)

мы сможем на основании сообщенных здесь математических сведений за­ключить, что процесс изменений этой величины носит характер плоской, волны, распространяющейся в ту или другую сторону со скоростью и, или суперпозиции таких волн.

Вид функций f1, f2 опре­деляется характером движения источника волн, а также явлениями, происходящими на границе среды.

Пусть источником волн является плоскость х =0, при­чем на этой плоскости величина S колеблется но закону s =Acoswt. В этом случае от плоскости х= 0 распространяются вправо и влево волны

s= Acos(wt kx), k = .

Из линейности волнового уравнения следует, что если ему удов­летворяют функции s1, s2,s3,... в отдельности, то ему удовлетворяет также функция

S == S1 + S2 + S3 +...

(принцип, суперпозиции).

Рассмотрим несколько примеров.

а) Волновому уравнению удовлетворяют синусоидальные бегущие волны

s1 = Aсоs(wt — kx ), s2= Acos(wt+kx).

На основании принципа суперпозиции волновому уравнению удовлетво­ряет стоячая волна

s=2Acoskx coswt

являющаяся суперпозицией только что рассмотренных синусоидальных бегущих волн.

б) Волновому уравнению на основании принципа суперпозиции удо­влетворяет всякая функция вида

S=

Это—функция вида f(at—bx); она изображает несинусоидальную волну, распространяющуюся без деформации в сторону возрастающих х.

в) Пусть волны S1, S2, имеющие вид коротких импульсов, распростра­няются навстречу одна другой. В некоторый момент моментальный снимок суперпозиции S1 + S2 этих волн имеет вид, показанный на рис. 4,а. Через некоторое время моментальный снимок волны будет иметь вид, показанный на рис. 4, б, – волны пройдут «одна сквозь другую» и притом каждая так, как будто другой не существует.

 

Упругие волны в стержне.

Волновое уравнение.

В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.

Рисунок 4

Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+ х. Масса этого куска равна р0S0 х, где р0 и S0 – соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда

слева стоит произведение массы куска на ускорение д­­­2 / дt2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.

Разделим уравнение на S0 :

(2.7)

Перейдя к пределу при , получим уравнение

(2.8)

справедливое в каждой точке стержня. Оно указывает, что ускорение данной точки пропорционально частной производной напряжения по ж в этой точке.

 

 

Подставляя в (2.8) соотношение (2.7), получим:

(2.9)

 

Вспомнив теперь формулу, содержащую определение дефор­мации, и подставив ее в (2.9), получаем:

(2.10)

Это—волновое уравнение. Оно указывает, что смещение распростра­няется но стержню в виде волн

(2.11)

или образует суперпозицию таких волн. Скорость распро­странения этих волн (скорость звука в стержне)

(2.12)

(мы опускаем для краткости индекс 0 у р). Эта скорость тем больше, чем жестче и чем легче материал. Формула (2.12)—одна из основных формул акустики.

Наряду со смещением нас интересуют скорость v = , с которой

.движутся отдельные плоскости х = const (не смешивать с u), деформация инапряжение . Дифференцируя (2.11)по t и но x,получаем:

v= uf’(x ut) (2.13a)

=f'(x ut), (2.13б)

=Ef’ (x ut). (2.13в)

Таким образом, смещение, скорость, деформация и напряжение распро­страняются в виде связанных определенным образом между собой неде­формирующихся волн, имеющих одну и ту же скорость и одинаковое на­правление распространения.

На рис. 5 показан пример «моментальных снимков», относящихся к одному и тому же моменту времени, смещения, деформации и скорости в одной и той же упругой волне. Там, где смещение имеет максимум или минимум, деформация и скорость равны нулю, так как они обе пропорцио­нальны производной f'{x ut). Физическая интерпретация здесь оче­видна: около максимума или минимума смещения соседние (бесконечно близкие) точки одинаково смещены и, следовательно, нет ни растяже­ния, ни сжатия; в тот момент, когда смещение достигает максимума (ми­нимума), его возрастание сменяется убыванием (или наоборот).

Сравнивая формулы (2.13а), (2.13в) и принимая во внимание (2.12) мы видим, что

(2.14)

где

(2.15)

есть величина, не зависящая от вида функции f и целиком определяемая свойствами материала. Эта величина называется удельным акустическим сопротивлением материала. Она является, как мы видим, наряду с u его важнейшей акустической характеристикой. Название величины связано с формальной аналогией между уравнениями (2.14) и законом Ома (р аналогично разности потенциалов, v - силе тока).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: