Парадокс времени "ставит перед нами проблему законов природы"[1, 5]. Эта проблема требует более детального рассмотрения. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена их собственными автономными внутренними причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическом равновесии, связывающем воедино природу, общество и небеса[1].
Не маловажную роль сыграли и христианские представления о Боге как о устанавливающем законы для всего живого.
Для Бога все есть данность. Новое, выбор или спонтанные действия относительны с человеческой точки зрения. Подобные теологические воззрения, казалось, полностью подкреплялись открытием динамических законов движения. Теология и наука достигли согласия.
Понятие хаоса вводится, т.к. хаос позволяет разрешить парадокс времени и приводит к включению стрелы времени[1] в фундаментальное динамическое описание. Но хаос делает и нечто большее. Он привносит вероятность в классическую динамику.
Парадокс времени не существует сам по себе. С ним тесно связаны два других парадокса: "квантовый парадокс" и "космологический парадокс".
Между парадоксом времени и квантовым парадоксом существует тесная аналогия. Сущность квантового парадокса заключается в том, что ответственность за коллапс несет наблюдатель и производимые им наблюдения. Следовательно аналогия между двумя парадоксами заключается в том, что человек отвечает за все особенности, связанные со становлением и событиями в нашем физическом описании.
Теперь, надо отметить третий парадокс – космологический парадокс. Современная космология приписывает нашей вселенной возраст. Вселенная родилась в результате большого взрыва около 15млд. лет назад. Ясно, что это было событием. Но в традиционную формулировку понятий законов природы события не входят. Это и поставило физику на грань величайшего кризиса. Хокинг написал о Вселенной так: "…она просто должна быть, и все!"[5, 123].
|
Классическая динамика и хаос
Теория КАМ
С появлением работ Колмогорова, продолженных Арнольдом и Мозером, - так называемой теории КАМ[2] - проблему не интегрируемости перестали рассматривать как проявление сопротивления природы прогрессу, а начали рассматривать как новый отправной пункт дальнейшего развития динамики[1].
Теория КАМ рассматривает влияние резонансов на траектории. Следует отметить, что простой случай гармонического осциллятора с постоянной частотой, не зависящей от переменной действия J, является исключением: частоты зависят от значений принимаемых переменными действия J. В различных точках фазового пространства фазы различны. Это приводит к тому, что в одних точках фазового пространства динамической системы существует резонанс, тогда как в других точках резонанса нет. Как известно, резонансы соответствуют рациональным соотношениям между частотами. Классический результат теории чисел сводится к утверждению, что мера рациональных чисел по сравнению с мерой иррациональных чисел равна нулю. Это означает, что резонансы встречаются редко: большинство точек в фазовом пространстве нерезонансные. Кроме того, в отсутствие возмущений, резонансы приводят к периодическому движению (так называемые резонансные торы), тогда как в общем случае мы имеем квазипериодическое движение (нерезонансные торы). Можно сказать кратко: периодические движения — не правило, а исключение.
|
Таким образом, мы вправе ожидать, что при введении возмущений характер движения на резонансных торах резко изменится (по теореме Пуанкаре), в то время как квазипериодическое движение изменится незначительно, по крайней мере при малом параметре возмущения (теория КАМ требует выполнения дополнительных условий, которые мы не будем здесь рассматривать). Основной результат теории КАМ состоит в том, что теперь мы имеем два совершенно различных типа траекторий: слегка изменившиеся квазипериодические траектории и стохастические j траектории, возникшие при разрушении резонансных торов [3].
Наиболее важный результат теории КАМ — появление стохастических траекторий — подтверждается численными экспериментами. Рассмотрим систему с двумя степенями свободы. Ее фазовое пространство содержит две координаты q1, q2 и два импульса p1, р2. Вычисления производятся при данном значении энергии H(q1,q2,p1,p2), и поэтому остается только три независимых переменных. Чтобы избежать построения траекторий в трехмерном пространстве, условимся рассматривать только пересечение траекторий с плоскостью q2p2. Для еще большего упрощения картины мы будем строить только половину этих пересечений, а именно учитывать только такие точки, в которых траектория «пронзает» плоскость сечения снизу вверх. Таким приемом пользовался еще Пуанкаре, и он называется сечением Пуанкаре (или отображением Пуанкаре). В сечении Пуанкаре отчетливо видно качественное различие между периодическими и стохастическими траекториями.
|
Если движение периодическое, то траектория пересекает плоскость q2p2 в одной точке. Если движение квазипериодическое, т.е ограничено поверхностью тора, то последовательные точки пересечения заполняют на плоскости q2p2 замкнутую кривую. Если же движение стохастическое, то траектория случайным образом блуждает в некоторых областях фазового пространства, и точки ее пересечения так же случайным образом заполняют некоторую область на плоскости q2р2.
Еще один важный результат теории КАМ состоит в том, что, увеличивая параметр связи, мы тем самым увеличиваем области, в которых преобладает стохастичность. При некотором критическом значении параметра связи возникает хаос: в этом случае мы имеем положительный показатель Ляпунова, соответствующий экспоненциальному разбеганию со временем любых двух близких траекторий. Кроме того, в случае полностью развитого хаоса облако точек пересечения, порождаемое траекторией, удовлетворяет уравнениям типа уравнения диффузии[1].
Уравнения диффузии обладают нарушенной симметрией во времени. Они описывают приближение к равномерному распределению в будущем (т. е. при t —> +∞). Поэтому весьма интересно, что в компьютерном эксперименте, исходя из программы, составленной на основе классической динамики, мы получаем эволюцию с нарушенной симметрией во времени.
Следует подчеркнуть, что теория КАМ не приводит к динамической теории хаоса.Ее главный вклад состоит в другом: теория КАМ показала, что при малых значениях параметра связи мы имеем промежуточный режим, в котором сосуществуют траектории двух типов — регулярные и стохастические. С другой стороны, нас интересует главным образом то, что произойдет в предельном случае, когда снова останется лишь один тип траекторий. Эта ситуация соответствует так называемым большим системам Пуанкаре (БСП). К их рассмотрению мы сейчас переходим.