Внешняя область Солнечной системы является местом нахождения газовых гигантов и их спутников. Орбиты многих короткопериодических комет, включая кентавров, также проходят в этой области. Твёрдые объекты этой области из-за их большего расстояния от Солнца, а значит, гораздо более низкой температуры, содержат льды воды, аммиака и метана.
Геоцентрическая и гелиоцентрическая системы
На протяжении долгого времени господствующей была геоцентрическая модель, в соответствии с которой в центре вселенной покоится неподвижная Земля, а вокруг неё по достаточно сложным законам движутся все небесные тела. Наиболее полно эта система была разработана античным математиком и астрономом Клавдием Птолемеем и позволяла с весьма высокой точностью описывать наблюдаемые движения светил.
Важнейший прорыв в понимании истинной структуры Солнечной системы произошёл в XVI веке, когда великий польский астроном Николай Коперник разработал гелиоцентрическую систему мира[117]. В её основе лежали следующие утверждения:
- в центре мира находится Солнце, а не Земля;
- шарообразная Земля вращается вокруг своей оси, и это вращение объясняет кажущееся суточное движение всех светил;
- Земля, как и все другие планеты, обращается вокруг Солнца по окружности, и это вращение объясняет видимое движение Солнца среди звёзд;
- все движения представляются в виде комбинации равномерных круговых движений;
- кажущиеся прямые и попятные движения планет принадлежат не им, но Земле.
Солнце в гелиоцентрической системе перестало считаться планетой, как и Луна, являющаяся спутником Земли. Вскоре были открыты 4 спутника Юпитера, благодаря чему исключительное положение Земли в Солнечной системе было упразднено. Теоретическое описание движения планет стало возможным после открытия законов Кеплера в начале XVII века, а с формулировкой законов тяготения количественное описание движения планет, их спутников и малых тел было поставлено на надёжную основу.
|
В 1672 году Джованни Кассини и Жан Рише определили расстояние до Марса, благодаря чему астрономическая единица получила выражение в земных единицах измерения расстояния.
Облако Оорта
Гипотетическое облако Оорта — сферическое облако ледяных объектов (вплоть до триллиона), служащее источником долгопериодических комет. Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 а. е. (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет). Полагают, что составляющие облако объекты сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы. Объекты облака Оорта перемещаются очень медленно и могут испытывать взаимодействия, нехарактерные для внутренних объектов системы: редкие столкновения друг с другом, гравитационное воздействие проходящей рядом звезды, действие галактических приливных сил
Строение Земли.
Земля относится к планетам земной группы, а значит она, в отличие от газовых гигантов, таких как Юпитер, имеет твёрдую поверхность. Это крупнейшая из четырёх планет земной группы в солнечной системе, как по размеру, так и по массе. Кроме того, Земля имеет наибольшую плотность, самую сильную поверхностную гравитацию и сильнейшее магнитное поле среди этих четырёх планет.
|
Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая.
Земная кора
Земная кора — это верхняя часть твёрдой земли. От мантии отделена границей с резким повышением скоростей сейсмических волн — границей Мохоровичича. Бывает два типа коры — континентальная и океаническая. Толщина коры колеблется от 6 км под океаном, до 30—50 км на континентах[35]. В строении континентальной коры выделяют три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая кора сложена преимущественно породами основного состава, плюс осадочный чехол. Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга. Кинематику этих движений описывает тектоника плит.
Мантия Земли
Мантия — это силикатная оболочка Земли, сложенная преимущественно перидотитами — породами, состоящими из силикатов магния, железа, кальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору.
Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5—70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км.
Гидросфера
Гидросфера — совокупность всех водных запасов Земли. Большая часть воды сосредоточена в океане, значительно меньше — в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара.
|
Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова, и в вечной мерзлоте, слагая криосферу.
Атмосфера
Атмосфера — газовая оболочка, окружающая планету Земля. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.
Биосфера — это совокупность частей земных оболочек (лито-, гидро- и атмосфера), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности.
Внешние Оболочки Земли
Внешние оболочки Земли — атмосфера, гидросфера и биосфера — хотя и не учитываются при определении ее размеров и формы (за исключением гидросферы), но являются характернейшей составной частью нашей планеты, отличающей ее от других аналогичных тел Солнечной системы, и играют огромную роль в становлении и развитии земной коры. Эти оболочки проникают одна в другую и находятся в постоянном взаимодействии между собой, литосферой и мантией Земли, выражающемся в обмене материи и энергии. Взаимодействие связано не только с различием их физических свойств, но и состава.
Общим свойством внешних оболочек Земли является Их высокая подвижность, благодаря которой любое изменение состава каждой из них очень быстро распространяется часто на всю ее массу. Этим объясняется относительная однородность состава оболочек в каждый данный момент, несмотря на то, что в ходе геологического развития они испытали очень значительные изменения. Атмосфера, например, как полагают многие крупнейшие ученые (В. И. Вернадский, А. П. Виноградов и др.), первоначально не содержала свободного кислорода и была насыщена углекислым газом. Ее современный состав является результатом жизнедеятельности растений. Точно так же изменялся во времени и состав гидросферы, о чем свидетельствуют сравнение солевого состава океанических вод с водами замкнутых бассейнов, сопоставление химического состава солей некоторых месторождений, образованных за счет испарения морской воды в прошлых геологических периодах, с солевым составом вод современного океана (например, отасфуртских залежей солей в Германии и Соликамских в России). Такие сравнения показывают, что значительная часть солей привнесена в океан реками. Об изменениях органического мира (биосферы) в ходе геологического развития общеизвестно. Эти изменения быстро распространялись на весь органический мир, населявший в каждый данный момент планету, что, как известно, было положено в основу палеонтологического метода определения относительного возраста горных пород и сыграло решающую роль в развитии современной геологии.
Внешние оболочки Земли: Атмосфера- воздушная оболочка Земли. Гидросфера- водная оболочка Земли. Биосфера- «сфера жизни», ее образуют живые организмы и среда, в которой они живут. Земная кора- твердая, каменная оболочка Земли, состоящая из минералов и горных пород.