Нанесение износостойких покрытий
Нанесение таких покрытий получило широкое распространение как у изготовителей инструмента, так и у его потребителей. Существует ряд способов: электроискровой (самый старый), плазменный, детонационный и др. Наиболее широко применяются газофазное осаждение (ГТ) и катодное напыление с ионной бомбардировкой (КИБ) некоторых материалов на рабочие поверхности инструментов.
С помощью газофазного метода наносят пленку карбида титана, толщиной 3 – 10 мкм. Процесс протекает в специальных камерах, где из газовой фазы при температуре 1000 – 1100 °С на поверхности детали осаждается карбид титана. Высокая температура ограничивает область применения метода нанесением только покрытий на твердый сплав. Стойкость инструмента увеличивается в три раза, однако на 30 – 40 % понижается прочность основы.
Метод катодного напыления основан на нанесении тонких пленок карбидов, нитридов, окислов металлов IV – VI групп таблицы Менделеева на поверхность изделия в вакууме. Сущность процесса состоит в том, что под действием напряжения между анодом (изделием) и катодом (металлом-испарителем) металл с катода испаряется, образуя ионное поле. Инструмент нагревается до температуры 300 – 600 °С. При прокачке через камеру азота или другого газа, содержащего азот, ионы испарившегося металла (титана, молибдена), взаимодействуя с ионами азота, образуют нитриды и осаждаются на поверхность анода, создавая тонкую пленку толщиной 2 – 12 мкм. При наличии нескольких испарителей из различных металлов можно чередовать их работу, нанося слои различных покрытий разной толщины и создавая таким образом многослойное покрытие, прочно сцепляющееся с основой и имеющее на поверхности материал с высокой абразивной стойкостью. Известны самые различные комбинации покрытий: TiC+ TiN, TiC + TiN + Аl2О3 и др. Число слоев может достигать 13 и более. Многослойные покрытия более эффективны в некоторых конкретных условиях применения. Поскольку температура процесса не очень высокая, метод приемлем для нанесения покрытий на инструменты из быстрорежущей стали, стойкость которых после однослойного покрытия нитридами титана повышается в 1,5 – 5,0 раз, в зависимости от вида инструмента, материала обрабатываемой детали и режима резания. Качество покрытия, прочность его сцепления с основой зависят от качества подготовки поверхности под покрытие, в основном от обезжиривания, для которого используется ультразвук и такие компоненты, как тринатрийфосфат, кальцинированная сода, дистиллированная вода и даже этиловый спирт. Сильно влияют на качество покрытия чистота исходных материалов (газов, испарителей) и точность поддержания температуры.
|
Существует ряд разновидностей процесса и созданных на их основе установок. К их числу относятся установки типа «Булат», «Пуск», «Юнион», «Мир» и др.
Износостойкость покрытий – только часть причин повышения стойкости инструмента. Косвенным доказательством тому, о чем будет сказано ниже, является повышение стойкости омедненных инструментов. Более того, нанесение покрытий происходит при высоких температурах, при которых, как установлено, протекают изменения свойств приповерхностных и глубинных слоев материала инструмента, благоприятно влияющих на сопротивляемость изнашиванию. Поэтому нанесение износостойких материалов является как бы комбинированным методом повышения работоспособности инструмента, термическое упрочнение + износостойкое покрытие. При этом для каждых конкретных условий работы (обрабатываемый материал, скорость резания и др.) существует свое покрытие, оптимальное по воздействию.
|
По данным исследований износостойкость покрытий повышается почти в два раза после термомеханической обработки, заключающейся в механическом воздействии вращающейся металлической щетки на поверхностные слои пластины, подогретой до 300 – 500 °С.
Очень высокой эффективностью отличается алмазоподобное пленочное покрытие, наносимое при температуре 380 °С. Стойкость прорезных и отрезных фрез с таким покрытием повышается в 230 раз.
Нанесение антифрикционных покрытий
Эти покрытия мягче, чем материал основы, и выполняют функции твердых смазок, понижающих коэффициент трения и уменьшающих тем самым износ инструмента. Особенно полезны для инструментов, работающих в условиях повышенного трения, а именно, инструментов с малыми задними углами при обработке вязких металлов, склонных к налипанию на инструмент. Покрытия наносятся при комнатной температуре на подготовленные специальным способом рабочие поверхности инструмента. Для улучшения сцепления с основой инструменты подвергаются нагреву до 200 °С. Низкая температура позволяет применить эти способы для инструментов из любых режущих материалов.
В качестве материалов для покрытий используют сульфиды и фосфаты различных металлов, ангидрид молибдена, а также эпилам (фторсодержащее поверхностно-активное вещество 6МФК-180 или 6СФК-180-05). Наибольшее применение получили дисульфид молибдена МоS2, никель-фосфорное покрытие NiP и эпилам. Стойкость инструментов с такими покрытиями в 1,5 – 6,0 раз выше, чем без них, особенно инструментов с малыми задними углами.
В случае никель-фосфорного покрытия на поверхности инструмента наносится слой химически восстановленного никеля, обладающий высокой твердостью, что наряду с создаваемым диффузионным барьером способствует дополнительному повышению стойкости инструмента.