Государственное бюджетное профессиональное
Образовательное учреждение
«Тольяттинский медицинский колледж»
Специальность «Сестринское дело»
(отделение допрофессиональной подготовки)
Реферат
БИОСИНТЕЗ БЕЛКА
(Отработка)
студентки группы С-105
Юсуповой Дианы
Руководитель
Елена Михайловна
2019-2020
учебный год
ВЕДЕНИЕ
Одной из задач современной биологии и ее новейших разделов – молекулярной биологии, биоорганической химии, физико-химической биологии – является расшифровка механизмов синтеза молекулы белка, содержащей сотни, а иногда и тысячи остатков аминокислот. Механизм синтеза должен обладать точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи Кодирующая система определяет первичную структуру, а вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химическим строением аминокислот.
Первоначальные представления, согласно которым синтез белка могут катализировать те же протеолитические ферменты, что и вызывающие его гидролиз, но путем обратимости химической реакции, не подтвердились. Оказалось, что синтетические и катаболические реакции протекают не только различными путями, но и в разных субклеточных фракциях. Не подтвердилась так же гипотеза о предварительном синтезе коротких пептидов с их последующим объединением в единую полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и несколько видов нуклеиновых кислот.
|
В современные представления о механизме синтеза белка большой вклад внесли советские биохимики. Так, в лаборатории А. Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей. В. Н. Ореховичем еще 50-е годы было показано, что перенос аминоцильных или пептидильных группировок на NH2 группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Как будет показано ниже, именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.
ОБЩАЯ СХЕМА БИОСИНТЕЗА БЕЛКА
Транскрипция. Отдельные участки двухцепочечной ДНК (гены) служат матрицами для синтеза на них однотяжевых цепей РНК по принципу комплементарности. Транскрипция проходит в три стадии: инициация, элонгация, терминация.
Процессинг и транспорт. В процессе синтеза РНК подвергается изменениям, в результате которых превращается в зрелую молекулу, пригодную для синтеза белка. Получающаяся информационная (матричная) РНК (мРНК) затем поступает к рибосомам в качестве программы, определяющей аминокислотную последовательность в синтезируемом белке.
Трансляция. Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы, которые осуществляют перевод (трансляцию) генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной. Каждая рибосома движется вдоль мРНК от одного конца к другому и соответственно выбирает из среды те аминоацил-тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно строится полипептидная цепь.
|
ГЕНЕТИЧЕСКИЙ КОД
Генетический код - способ сохранения наследственной информации в виде последовательности нуклеотидов в молекулах нуклеиновых кислот. Этот код был расшифрован в 1960-ых. Генетический код, основан на использовании алфавита, состоящего из четырех букв: А, Г, Ц и Т. Эти буквы соответствуют нуклеотидам, найденным в ДНК: аденин, гуанин, цитозин, тимин.
Последовательность нуклеотидов в молекуле мРНК читается непрерывными группами из трех нуклеотидов, называемых триплетами или кодонами. РНК представляет собой линейные полимер, состоящий из четырех разных нуклеотидов, поэтому возможны 4·4·4=64 комбинации трех нуклеотидов. Белки состоят из 20 аминокислот. Поэтому либо некоторые триплеты не используются, либо некоторые аминокислоты кодируются более, чем одним триплетом.
Различают два типа кодонов- смысловые, или значащие кодоны, и бессмысленные кодоны, или нонсенс-кодоны. Большинство (61) кодонов - значащие и только 3 (UAA, UAG, UGA) - нонсенс-кодоны. Смысловые кодоны соответствуют аминокислотам, а кодон AUG, помимо кодирования митионина, является инициирующим, или стартовым кодоном. Нонсенс-кодоны являются терминирующими кодонами, или стоп-кодонами.
Свойства генетического кода
Генетический код является неперекрываемым, непрерывным, специфичным, универсальным и вырожденным
Неперекрываемость кода означает, что каждый нуклеотид входит только в один кодон, и поэтому изменения любого нуклеотида изменяют смысл только одного кодона.Генетический код непрерывен. Он имеет линейный непрерывающийся порядок считывания. Кодоны транслируются всегда целиком. Расположение остатков аминокислот в синтезируемом полипептиде определяется антикодоном тРНК (триплет нуклеотидов, комплементарный одному из кодонов).
Специфичность кода означает, что код является однозначным, поскольку каждый кодонный триплет кодирует только одну аминокислоту, и с одной мРНК можно синтезировать только одинаковые пептиды,Генетический код универсален для всех живых существ - у всех живых организмов, включая вирусы и бактерии, одинаковые кодоны (триплеты нуклеотидов) кодируют одинаковые аминокислоты. Исключение составляют 4 кодона митохондрий грибов и животных, имеющих информационный смысл, отличный от универсального кода.
|
Вырожденность кода означает его избыточность, синонимичность, то есть одну аминокислоту может кодировать более одного триплета. Однако вырожденность не абсолютна. Например, метионину соответствует только один кодон.
До расшифровки генетического кода было невозможно понять механизм синтеза белка и объяснить происхождение мутаций. Открытие генетического кода позволило ответить на вопрос о том, как связаны между собой дефекты определенных белков человека и наследственные заболевания.
До расшифровки генетического кода было невозможно понять механизм синтеза белка и объяснить происхождение мутаций. Открытие генетического кода позволило ответить на вопрос о том, как связаны между собой дефекты определенных белков человека и наследственные заболевания.
1. Триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из четырех нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется два нуклеотида). Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Из 4 нуклеотидов можно создать 64 различные комбинации по 3 нуклеотида в каждой (4*4*4=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 кодона являются лишними. Однако это не так.
2. Выраженось. Это означает, что каждая аминокислота шифруется более чем одним кодоном (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним триплетом. (Это видно из таблицы генетического кода.) Тот факт, что метионин кодируется одним триплетом АУТ, имеет особый смысл, который вам станет понятен позже (16).
3. Колинеарность. последовательность аминокислот синтезиромой молекуле белка совпадает с последовательность треплетов в иРНК
4. Универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушки и человека одни и те же триплеты кодируют одни и те же аминокислоты.
ТРАНСЛЯЦИЯ
Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.
В цитоплазме клетки обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.
Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Любая аминокислота может попасть в рибосому, только прикрепившись к специальной тРНК.
На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 секунды.
За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК, отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота включается в растущую цепочку.
Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.
Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так постепенно формируется молекула полипептида (белка).
Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.
Так как клетке необходимо много молекул каждого белка, то как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперёд, за ней на ту же иРНК нанизывается вторая рибосома. Затем на иРНК последовательно нанизываются следующие рибосомы.
Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, образуют полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых молекул белка.
Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.
ТРАНСКРИПЦИЯ