Жидкостные термометры с частичным погружением




Приборы для измерения температуры

Температура - это физическая величина, характеризующая тепловое состояние тела.

Согласно кинетической теории температурой называютфизическую величину, количественно характеризующую меру средней кинетической энергии теплового движения молекул какого - либо тела или вещества.

В начале 18 века Г. Фаренгейтом была введена первая температурная шкала, названная его именем.

В 1742 году А. Цельсием была предложена привычная нам десятичная - 32температурная шкала. В качестве опорных точек для неё используются температура плавления льда (0 0 С) и температура кипения воды (100 0 С).

В начале 19 века английский лорд Кельвин предложил универсальную абсолютную термодинамическую шкалу, которая стала стандартной в современной термометрии. Он также обосновал понятие абсолютного нуля температуры.

Температуру в термодинамической шкале обозначают в 0К, а в практической шкале - в 0С.

Формулы перевода температуры из одной шкалы в другую:

Т (К)= Т(0С) +273,15

Т(0С) =5/9(Т(0F) – 32)

Классификация приборов для измерения температуры

В зависимости от методики измерений все типы термометров делятся на 2 класса: контактные и бесконтактные.

Контактные – их отличительной особенностью является необходимость теплового контакта между датчиком термометра и средой, температура которой измеряется.

Контактные приборы по принципу измерения делятся на:

1. Термометры расширения.

2. Манометрические термометры.

3. Термометры сопротивления.

4. Термопары.

Бесконтактные - это такие термометры, для измерения которыми нет необходимости в тепловом контакте среды и прибора, а достаточно измерений собственного теплового или оптического излучения.

Бесконтактные делятся на:

1. пирометры излучения;

2. радиометры;

3. тепловизоры

2. Принцип работы жидкостных термометров.

Жидкостный термометр технический

Жидкостный термометр — это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры. Жидкостные термометры хорошо всем известны в быту: для измерения комнатной температуры или температуры человеческого тела.

Жидкостный термометр

Жидкостные термометры состоят из пяти принципиальных частей, это: шарик термометра, жидкость, капиллярная трубка, перепускная камера, и шкала.

Принцип работы жидкостного термометра

Составные части жидкостного термометра

Принцип работы жидкостных термометров основан на свойстве жидкостей сжиматься и расширяться. Когда жидкость нагревается, то обычно она расширяется; жидкость в шарике термометра расширяется и двигается вверх по капиллярной трубке, тем самым показывая повышение температуры. И, наоборот, когда жидкость охлаждается, она обычно сжимается; жидкость в капиллярной трубке жидкостного термометра понижается и тем самым показывает понижение температуры. В случае, когда имеется изменение измеряемой температуры вещества, то происходит перенос теплоты: сначала от вещества, чья температура измеряется, к шарику термометра, а затем от шарика к жидкости. Жидкость реагирует на изменение температуры двигаясь вверх или вниз по капиллярной трубке.

Тип используемой жидкости в жидкостном термометре зависит от диапазона измеряемых термометром температур.

Ртуть, -39—600 °C (-38—1100 °F);
Сплавы ртути, -60—120 °C (-76—250 °F);
Спирт, -80—100 °C (-112—212 °F).

Жидкостные термометры с частичным погружением

Конструкция многих жидкостных термометров предполагает, что они будут висеть на стене, и вся поверхность термометра входит в соприкосновение с веществом, температура которого измеряется. Однако, некоторые виды промышленных и лабораторных жидкостных термометров сконструированы и откалиброваны таким образом, что предполагают их погружение в жидкость.

Из термометров, используемых таким образом наиболее широко применяются термометры с частичным погружением. Для того, чтобы получить точные показания с помощью термометра с частичным погружением, погружают его шарик и капиллярную трубку только до этой линии.

Термометр жидкостный с частичным погружением

Термометры с частичным погружением погружаются до отметки для того, чтобы компенсировать изменения температуры окружающего воздуха, которые могут на жидкость, находящуюся внутри капиллярной трубки. Если изменения температуры окружающего воздуха (изменения температуры воздуха вокруг термометра) вероятны, то они могут вызвать расширение или сжатие жидкости внутри капиллярной трубки. В результате на показания будет влиять не только температура вещества, которая измеряется, но и температура окружающего воздуха. Погружение капиллярной трубки до отмеченной линии снимает воздействие температуры окружающего воздуха на точность показаний.

В условиях промышленного производства часто необходимо измерять температуры веществ, проходящих по трубам или находящихся в емкостях. Измерение температуры в этих условиях создает две проблемы для прибористов: как измерить температуру вещества, если нет непосредственного доступа к этому веществу или жидкости, и как вынимать жидкостный термометр для осмотра, проверки или замены не останавливая технологического процесса. Обе эти проблемы устраняются, если применять измерительные каналы для ввода термометров.

Измерительный канал с введенным термометром

Измерительный канал для ввода термометра представляет собой канал в виде трубы, который закрыт с одного конца и открыт с другого. Измерительный канал предназначен для того, чтобы в него помещать шарик жидкостного термометра и таким образом оградить его от веществ, которые могут вызывать коррозию, отравляющих веществ, или под высоким давлением. Когда применяются измерительные каналы для ввода термометров, то теплообмен происходит в форме непрямого контакта (через измерительный канал) вещества, чья температура измеряется, и шариком термометра. Измерительные каналы представляют собой уплотнение для повышенного давления и предотвращают выход наружу жидкости, температура, которой измеряется.

Измерительные каналы делаются стандартных размеров, так что они могут использоваться с различными типами термометров. Когда термометр устанавливается в измерительный канал, то его шарик вставляется в канал, а поверх термометра накручивается гайка, чтобы закрепить термометр.

3. Принцип работы минимального термометра.

Минимальный термометр

 

В минимальном термометре, показанном на рисунке, применяется спирт, а указатель находится внутри жидкости. Когда температура падает, спирт сжимается и указатель оттягивается назад силой поверхностного натяжения в мениске. Когда температура повышается, спирт протекает мимо указателя, который остается на месте. Указатель установлен здесь не столь плотно, как в максимальном термометре, и термометр используется в горизонтальном положении (например, для измерения минимальной температуры земли ночью). Если термометр слегка наклонить, то указатель соскользнет вниз по трубке и остановится в мениске. Так этот термометр приводится в исходное положение.

 

4. Принцип работы максимального термометра.

 

Максимальный термометр

 

На рисунке показан другой максимальный термометр, в котором над столбиком ртути помещен стальной указатель. По мере роста температуры указатель продвигается вверх по столбику ртути, поскольку сталь плавает в ртути. Когда температура падает, указатель остается на месте, удерживаемый маленькой пружинкой. Указатель дает максимальное показание. Для установке термометра в исходное положение применяется магнит, возвращающий указатель на поверхность ртутного столба.

 

 

5. Принцип работы деформационных термометров.

Деформационные термометры представляют из себя 2 пластины из разных металлов, соединенных друг с другой. Металлы имеют разный коэффициент линейного расширения. За счёт этого при изменении покажи t°, пластина изгибается. Величина изгиба линейно зависит от t°.

Достоинством биометрического термометра является их высокая надежность и удобства в эксплуатации. Недостаток: недостаточная точность. Деформационные термометры являются чувствительным элементом термографом. Термографы предназначены для регистрации t° за длительной промежуток времени (6, 12, 24 часа).

Основными частями термографа является барабан, на котором закрепляется бумажная лента. Барабан приводится во вращение часовым механизмом. Имеется перо, которое системой рычагов связано с биметаллической пластиной.

При изменении t° пластина изгибается и через систему рычагов перемещает перо.

Перо вычерчивает на бумаге кривую в координатах t – время, T ° - температура. Полученная кривая – термограмма.

6. Принцип работы термоэлектрических термометров.

Принцип действия термоэлектрических термометров основан на свойстве металлов, сплавов и некоторых неметаллических материалов создавать термо-э.д.с. при нагревании места соединения (спая) двух разнородных проводников или полупроводников. Простейшая термоэлектрическая цепь из двух разнородных термоэлектродов, концы которых электрически соединены, называется термопарой. Термопара помещается в защитный чехол, вместе с которым образует термоэлектрический термометр.

Схема термоэлектрического термометра

1 – горячий спай; 2 – колпачок; 3 – керамические бусы; 4 – чехол; 5 – засыпка; 6 – головка; 7 – герметик.

Стандартные термоэлектрические термометры применяются для измерения температур в пределах —от +200 до +2500° С. При температурах до 1300° С в качестве изоляции между термоэлектродами применяются трубки и бусы из фарфора. При более высоких температурах — из окиси алюминия, окиси магния, окиси бериллия, двуокиси циркония.

7. Принцип работы транзисторных термометров.

Значительно большей чувствительностью обладает транзисторный термометр, схема которого изображена на рис. 79, б.

 

Это объясняется тем, что здесь в качестве чувствительного элемента используется транзистор, работающий в усилительном каскаде, собранном по схеме с разделенными нагрузками. Благодаря усилительным свойствам транзистора чувствительность термометра возрастает в десятки раз. Органы регулирования и настройки здесь такие же, как в ранее рассмотренной конструкции.

 

При изготовлении термометра по схеме рис. 79, а можно использовать диоды типа Д105 или Д106 (Д1—Д4), КС156А (Д5). В термометре по схеме рис. 79, б транзистор Т1 может быть типа КТ315 или КТ312 с любым буквенным индексом. Термометр с транзистором типа КТ312 будет обладать меньшей тепловой инерцией, так как у этого транзистора корпус металлический, а у КТ315 — пластмассовый.

8. Перечислить типы приборов применяемых для определения влажности.

Приборы для определения влажности воздуха

Для определения абсолютной влажности воздуха пользуются двумя видами прибора, называемого психрометром (от греч. Psychros – холодный): станционным психрометром Августа и аспирационным психрометром Ассмана.

Принцип психрометрии заключается в определении показаний двух термометров, резервуар одного из которых увлажнен. Влага, испаряясь с различной скоростью в зависимости от влажности и скорости движения воздуха, отнимает тепло от термометра, поэтому показания влажного термометра, как правило, будут ниже, чем показания сухого.

Станционный психрометр Августа состоит из двух одинаковых спиртовых термометров, резервуар одного из которых обернут кусочком тонкой гигроскопичной ткани, опущенной одним концом в стаканчик с дистиллированной водой комнатной температуры. Вследствие испарения воды температура влажного термометра будет ниже температуры второго (сухого) термометра. Показания термометров снимают через 15 минут после увлажнения одного из них.

Гигрометр (от греч. hygros - влажный) - прибор для непосредственного определения, относительной влажности воздуха. Существуют различные типы гигрометров, но наиболее распространенные из них - волосяные, основанные на способности волоса в силу гигроскопичности удлиняться во влажной атмосфере и укорачиваться в сухой.

Гигрограф. Принцип работы гигрографааналогичен работе барографа и термографа. Прибор служит для регистрации непрерывных измерений относительной влажности, состоит извоспринимающего элемента - пучка обезжиренных волос, вращающегося барабана с лентой, соединительных рычагов и пера с чернилами.

Для определения влажности воздуха используют такие приборы, как гигрометр и психрометр.

Гигрометры бывают двух видов — конденсационные и волосные.

С помощью конденсационного гигрометра можно определить абсолютную влажность воздуха по точке росы. Он представляет собой металлическую коробочку 1 (рис. 23). Её передняя стенка 2 хорошо отполирована и окружена также отполированным кольцом 3. Между стенкой и кольцом расположена теплоизолирующая прокладка 4. К коробочке подсоединена резиновая груша 5 и вставлен термометр 6.

Рис. 23. Внешний вид и устройство конденсационного гигрометра

Если в коробку налить легко испаряющуюся жидкость (эфир), то, продувая воздух через коробку с помощью груши, можно вызвать сильное испарение эфира и быстрое охлаждение коробки. На полированной поверхности появляются капельки росы. По термометру замечают температуру, при которой они появляются. Это и есть точка росы, так как появление росы говорит о том, что пар стал насыщенным. По таблице плотности насыщенного водяного пара и определяют абсолютную влажность воздуха.

Действие волосного гигрометра (рис. 24) основано на свойстве человеческого волоса удлиняться при увеличении относительной влажности воздуха. При увеличении влажности воздуха длина волоса увеличивается, а при уменьшении влажности его длина уменьшается. При этом стрелка, перемещаясь по шкале, указывает относительную влажность воздуха.

Рис. 24. Волосной гигрометр

Прибор для определения влажности воздуха — психрометр — состоит из двух термометров, один из которых обмотан тканью, конец которой опущен в воду. Поскольку вода испаряется, то термометр охлаждается. Чем больше относительная влажность, тем менее интенсивно идёт испарение. Следовательно, разность показаний сухого и влажного термометров будет меньше. По этой разности температур с помощью специальных таблиц и определяют относительную влажность воздуха.

Психрометр

Влажность воздуха меняется в течение суток. Температура воздуха днём выше, чем ночью, поэтому относительная влажность воздуха днём меньше, чем в ночное время.

Определение влажности воздуха необходимо в метеорологии для предсказания погоды, в теплицах и оранжереях для поддержания нужного режима растениям. Работа многих технических устройств и возникновение коррозии зависит от влажности воздуха. Для хранения произведений искусства и книг необходимо поддерживать влажность воздуха на определённом уровне. От влажности воздуха зависит интенсивность испарения влаги с поверхности кожи человека. Чтобы человек чувствовал себя комфортно, влажность воздуха в помещениях должна быть 40—60%.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: