Отличия про- и эукариотических рибосом, их химический состав.




Содержание

1. Введение

2. Особенности организации и функционирования рибосом, центриолей

3. Отличия про- и эукариотических рибосом, их химический состав.

4. Механизм сборки рибосом

5. Роль центриолей в процессе митоза и мейоза

 

Введение

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички).

Рибосомы — мелкие органоиды, образованные двумя субъединицами: большой и малой. Они состоят из белков и рРНК. Малая субъединица содержит одну молекулу рРНК и белки, большая — три молекулы рРНК и белки. Рибосомы могут либо свободно находиться в цитоплазме, либо прикрепляться к эндоплазматическому ретикулуму. На рибосомах происходит синтез белка. Белки, синтезируемые на рибосомах на поверхности эндоплазматического ретикулума, обычно поступают в его цистерны, а образовавшиеся на свободных рибосомах остаются в гиалоплазме.

Клеточный центр (центросома) обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг к другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек (9 + 0). Центриоли играют важную роль в делении клетки, образуя веретено деления.

Особенности организации и функционирования рибосом, центриолей

Рибосомы (PC) - немембранный универсальный органоид, присущий всем клеткам, как эукариот, так и прокариот. Их размер составляет =20 нм. Количество PC в клетке может достигать десятков тысяч.

Универсальная функция PC заключается в синтезе белка в клетке. У эукариот PC присутствуют в гиалоплазме (свободные PC), на шероховатом ЭР, на оболочке ядра, их называют 80S, а также в митохондриях и пластидах (70S).

S - единица седиментации, показывает скорость осаждения частиц при ультрацентрифугировании в градиенте плотности хлористого цезия. По величине S оценивают размер частиц.

Целая PC (состоящая из двух субъединиц) может диссоциировать на большую субъединицу рибосом (БСР) и малую (МСР): у прокариот БСР включает 50S, а малая - 30S; у эукариот - 60S и 40S.

БСР представлена центральной частью, называемой телом, оно имеет три выступа: ребро, головку и стержень. МСР, соответственно, имеет: тело, платформу, головку и клюв. Две субчастицы объединяются в рибосоме «головка к головке», «тело к телу», и в PC формируются четыре функциональных активных центра: аминоацильный (АЦ), пептидильный (ПЦ), трансферазный (ТЦ) и эжекторный (ЭЦ). Функция АЦ: связывания аминоацил т-РНК, за исключением стартовой, которая сразу приходит в ПЦ. ПЦ функция заключается в связывании пептидил т-РНК, т.е. транспортной РНК с пептидом, состоящим из двух и более аминокислотных остатков. ТЦ расположен на внутренней поверхности БСР в зоне контакта её с МСР. В этом центре работает фермент пептидилтрансфераза. Он катализирует реакцию переноса пептида с пептидил т-РНК, находящейся в ПЦ, на аминокислотный остаток аминоацил т-РНК, расположенный в АЦ. В результате образуется пептидная связь и аминоацил т-РНК становится пептидил т-РНК. ЭЦ расположен рядом с ПЦ и ТЦ. В него попадает т-РНК, освободившаяся от пептида из РЦ, т.е. свободная т-РНК, которая затем из ЭЦ уходит из PC.

С химической точки зрения, рибосома представляет собой рибонуклеопротеин, т.к. состоит из р-РНК и белков. В составе 70S рибосом прокариот имеются три вида р-РНК: 23S и 5S в БСР, 16S - в МСР. У эукариот в рибосоме содержится четыре вида

р-РНК: 28S, 5,8S и 5S в БСР, 18S - в МСР. Белки располагаются преимущественно на поверхности компактно уложенной р-РНК.

Клеточный центр

Клеточный центр (КЦ), или цитоцентр - универсальный немембранный органоид эукариотических клеток. Расположен в геометрическом центре клетки около ядра и представляет собой центр организации микротрубочек (ЦОМТ). В КЦ происходит полимеризация а- и р-тубулинов, входящих в состав МТ.

КЦ состоит из центросомы и центросферы, которые построены из МТ. Центросфера представляет собой совокупность радиально расходящихся МТ, а также содержит микрофибриллы и промежуточные филаменты.

Центросомы представляют собой полые цилиндрические тельца - центриоли (ЦО). Стенки ЦО образованы 9 триплетами МТ, которые соединены белками-связками.

Часто внутри одного из концов ЦО находится белковая стержневая структура - ось или втулка, от которой отходят 9 белковых фибрилл-спиц. Они соединяются с МТ и формируется внутренний скелет центриолей.

Структура ЦО и общая организация КЦ меняются в течение клеточного цикла.

ЦО играет роль «затравки» и для формирования жгутиков и ресничек у жгутиконосцев, инфузорий, а также в специализированных клетках многоклеточных

животных и человека. Ресничками обладают эпителиальные клетки дыхательных путей, а хвостик сперматозоида - это специализированный жгутик. План строения ресничек и жгутиков соответствует строению ЦО. Стенки этих органоидов движения представлены девятью дублетами МТ, которые растут от ЦО, в данном случае называемой базальным тельцем. В центре ресничек и жгутиков находятся две одиночные МТ. Дублеты способны скользить друг относительно друга, что заставляет

ресничку или жгутик изгибаться. Обычно реснички короче жгутиков более чем в 10 раз.

Итак, КЦ выполняет важнейшие универсальные функции в клетках эукариот:

организует сборку интерфазных МТ;

обеспечивает сборку нитей веретена деления, строящихся из МТ.

Отличия про- и эукариотических рибосом, их химический состав.

Прокариотическая клетка содержит несколько тысяч рибосом, в эукариотической клетке их в десятки раз больше. Рибосомы про- и эукариот отличаются по размерам (у прокариот они мельче, чем у эукариот), но принцип их строения одинаков. Состоят рибосомы из двух частей: большой и малой субъединиц. В их состав кроме белков входят РНК. Эти РНК получили название рибосомных, рРНК.

Величину рибосом и составляющих их частей принято указывать в специальных единицах - S (Сведберг). S - это коэффициент седиментации, который характеризует скорость перемещения молекул или частиц в центробежном поле при центрифугировании. Скорость перемещения зависит от массы частиц, их размеров и формы. Величина рибосом прокариот и эукариот - 70S и 80S соответственно.

В рибосомы прокариот входит три разных вида молекул рРНК (16S рРНК - в малую; 23S рРНК и 5S рРНК - в большую субъединицы) и 55 различных белков (21 - в малую и 34 - в большую субъединицы). В состав эукариотических рибосом входят четыре вида молекул рРНК (18S рРНК - в малую; 28S рРНК, 5.8S рРНК и 5S рРНК - в большую субъединицы) и около 80 белков. В митохондриях и хлоропластах также обнаружены рибосомы. Они характеризуются теми же свойствами и параметрами, что и рибосомы прокариот.

Молекулы рРНК взаимодействуют друг с другом и с белками, образуя компактные структуры - субъединицы рибосом. У эукариот соединение рРНК с рибосомными белками происходит в ядрышке. В центре ядрышка расположен участок хромосомы, в котором находятся гены рибосомных РНК. Синтезированные рРНК соединяются с рибосомными белками, которые поступили через ядерные поры из цитоплазмы, где они были синтезированы на уже существовавших рибосомах. Они соединяются с молекулами рРНК, образуя субъединицы рибосом. Готовые субъединицы через поры выходят в цитоплазму, где будут участвовать в синтезе белка.

Таким образом, ядрышко - это не только место синтеза рибосомных РНК, но и место сборки субъединиц рибосом. Рибосомы нужны в огромных количествах, поскольку в клетке постоянно идут процессы синтеза белка. Поэтому на хромосомах в тех местах, где расположены гены рРНК, находится громадное скопление молекул: синтезируемые рРНК, пришедшие из цитоплазмы рибосомные белки, собираемые и готовые суъединицы рибосом. Понятно, почему ядрышко является самой плотной частью ядра и клетки. Размеры ядрышка зависят от функционального состояния клеток. Если в клетке активно идут процессы биосинтеза белков, ядрышко может занимать до 25% от объема ядра.

Ядрышко образуется на тех хромосомах, где есть гены рРНК. Эти участки хромосом называются ядрышковыми организаторами. Например, у человека десять хромосом способны образовывать ядрышки. Каждый ядрышковый организатор представляет собой огромную хроматиновую петлю, так как содержит несколько десятков и даже сотен одинаковых последовательностей - генов рРНК. Эти последовательности расположены друг за другом и синтез рРНК идет одновременно со всех копий. Таким образом увеличивается интенсивность синтеза рРНК, на долю которой приходится более 90 % всей РНК клетки. Ядрышки, образованные разными хромосомами, очень часто сливаются друг с другом. В ядрах клеток человека обычно наблюдают одно, два или три ядрышка.

При начале трансляции малая субъединица рибосомы связывается с определенным участком иРНК, к ним присоединяется тРНК с аминокислотой, а затем с этим комплексом связывается большая субъединица. После этого рибосома готова к выполнению своей функции - синтезу белка. Белки рибосом способны выполнять свои функции только в составе рибосомы -только в комплексе с рРНК и другими рибосомными белками они приобретают небходимую конформацию.

Эукариотная транскрипция разделена с трансляцией в пространстве и времени. Транскрипция вместе с процессингом РНК происходят в нуклеоплазме, а трансляция, в зависимости от типа клеток, осуществляется преимущественно в цитозоле или на шероховатом эндогшазматическом ретикулуме (англ. rough endoplasmic reticulun, RER). Интегральные белки встраиваются в мембрану RER котрансляционно, а секретируемые белки выделяются в полость цистерны RER через тороидальный переходник между выходным порталом рибосомы и мембранным транслоконом (его образует белок Sec61).

У прокариотов не существует пространственно-временной изоляции процессов транскрипции и трансляции. Цитоплазматические рибосомы присоединяются к 5'-концу мРНК еще до завершения образования короткоживущего транскрипта. Котрансляционная инсерция интегральных белков известна только на примере «шероховатых тилакоидов» цианобактерий. Гидрофобные белки при помощи SRP-частиц презентируются транс локону — компоненту генеральной системы секреции Sec.

Транспортная РНК, напоминает в развернутой форме клеверный лист. Аминокислота прикреплена к “черешку клеверного листа”, а на вершине листа находится триплет, взаимодействующий с кодоном в иРНК - антикодон. Роль "заглавной буквы" при трансляции аминокислотной последовательности у прокариот выполняет измененная форма аминокислоты метионина - формилметионин. Ей соответствует кодон АУГ. После завершения синтеза полипептидной цепи формилметионин отщепляется и в готовом белке отсутствует. В том случае, когда триплет АУГ стоит внутри гена, он кодирует неизмененную аминокислоту метионин.

Если кодон и антикодон комплементарны друг другу, то рибосома передвигается относительно иРНК, и следующий кодон становится доступным для взаимодействия со следующей тРНК. Происходит отсоединение первой аминокислоты от первой тРНК и присоединение ее к аминокислоте, которую принесла вторая тРНК. Во время передвижения рибосомы относительно иРНК первая тРНК, свободная от аминокислоты, покидает рибосому. Вторая тРНК остается, соединенная с пептидом из двух аминокислотных остатков, и в рибосому входит третий кодон иРНК для взаимодействия с очередной тРНК и т.д.

Когда в рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА), ни одна тРНК не может занять место напротив него, так как не существует тРНК с антикодонами, комплементарными этим последовательностям. Полипептидной цепи не к чему присоединиться и она покидает рибосому. Синтез белка завершен. Таким образом, рибосома соединяет в одном месте участников трансляции: иРНК и аминокислоты в комплексе с тРНК, при этом молекулы РНК так ориентированы относительно друг друга, что становится возможным кодон-антикодоновое взаимодействие. Образование пептидной связи контролируется правильностью кодон-антикодонового взаимодействия. Рибосома осуществляет образование пептидной связи и перемещение относительно иРНК.

Молекула информационной РНК взаимодействует не с одной рибосомой, а с несколькими. Каждая рибосома проходит весь путь от "заглавного" кодона до терминирующего, синтезируя одну молекулу белка. Чем больше рибосом пройдет по иРНК, тем больше молекул белка будет синтезировано. Молекула информационной РНК с несколькими рибосомами похожа на нитку бус и называется полирибосомой, или полисомой.

Химический состав рибосом. В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Механизм сборки рибосом



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: