Во многих отраслях промышленности перерабатывают или применяют различные соединения ртути, хрома, кадмия, цинка, свинца, меди, никеля, мышьяка и другие вещества, что ведет к загрязнению ими сточных вод.
Для удаления этих веществ из сточных вод в настоящее время наиболее распространены реагентные методы очистки, сущность которых заключается в переводе растворимых в воде веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком реагентных методов очистки является безвозвратная потеря ценных веществ с осадками
В качестве реагентов для удаления из сточных вод ионов тяжелых металлов используют гидроксиды кальция и натрия, карбонат натрия, сульфиды натрия, различные отходы, например феррохромовый шлак, который содержит (в %): СаО – 51,3; MgO – 9,2; SiО2 – 27,4; Cr2O3 – 4,13; А12О3 – 7,2; FeO – 0,73.
Наиболее широко используется гидроксид кальция. Осаждение металлов происходит в виде гидроксидов. Процесс проводится при различных значениях рН.
Значения рН, соответствующие началу осаждения гидроксидов различных металлов и полному осаждению, зависят от природы металлов, концентрации их в растворе, температуры, содержания примесей. Например, при совместном осаждении двух или нескольких ионов металлов при рН = const достигаются лучшие результаты, чем при осаждении каждого из металлов в отдельности. При этом образуются смешанные кристаллы, и происходит адсорбция на поверхности твердой фазы ионов металлов, благодаря чему достигается более полная очистка от некоторых металлов.
Очистка от соединений ртути. Сточные воды, загрязненные ртутью и ее соединениями, образуются при производстве хлора и едкого натра, в других процессах электролиза с использованием ртутных электродов, на ртутных заводах, в некоторых гальванических производствах, при изготовлении красителей, углеводородов, на предприятиях, использующих ртуть как катализатор.
|
В производственных сточных водах может присутствовать металлическая ртуть, неорганические и органические ее соединения. В неорганических соединениях токсичны главным образом ионы Hg2+, поэтому наиболее опасны хорошо растворимые и легко диссоциирующие соли.
Органические соединения ртути применяют при консервировании древесины, при синтезе металлорганических соединений, как ядохимикаты, для защиты пластических материалов, бумажной массы и текстиля, казеиновых клеев от плесневых грибков. Органические соединения ртути весьма токсичны и отличаются от неорганических солей тем, что не дают реакции на ионы Hg.
Для выделения из сточных вод ртути используют методы восстановления: сульфидом железа, гидросульфидом натрия, гидразином, железным порошком, газообразным сероводородом и др. Широко изучаются сорбционные методы очистки от ртути. Весьма эффективным является ионный обмен с винилпиридиновыми сорбентами, емкость которых доходит до 40%. Наиболее распространенным способом удаления растворимых в воде соединений ртути является перевод их в труднорастворимый суль фид ртути и осаждение его.
Для осаждения Hg в сточные воды сначала добавляют сульфид натрия, гидросульфид натрия или сероводород. Затем обрабатывают воду хлоридами натрия, калия, магния, кальция или сульфитом магния в количестве 0,1 г/л. В этих условиях сульфид ртути осаждается в виде гранул. Для удаления тонкодисперсных коллоидных частичек сульфида ртути целесообразно добавлять коагулянты А12(SО4)3 18Н2O, FeSO4·7H2O и др.
|
Осадок сульфида ртути отделяют от сточных вод на вакуум-фильтрах или фильтр-прессах. Отделение HgS до остаточной концентрации 0,001 мг/л можно обеспечить и на угольных фильтрах. Отработанный уголь, содержащий сульфид ртути, сжигают в печи или подвергают обработке для рекуперации ртути. Для удаления из растворов соединений ртути можно использовать и свежеосажденный сульфид железа. Для очистки может быть применена и смесь сульфида железа с сульфатом бария при избытке сульфида железа. Растворенные неорганические соединения ртути можно восстанавливать до металлической ртути с последующим выделением из воды.
Кроме методов осаждения для очистки сточных вод oт неорганических соединений ртути могут быть использованы и сорбционные методы.
Очистка от соединений цинка, меди, никеля, свинца, кадмия, кобальта. Соли этих металлов содержатся в сточных водах горнообогатительных фабрик, металлургических, машиностроительных, металлообрабатывающих, химических, химико-фармацевтических, лакокрасочных, текстильных и др. заводов.
При обработке кислых вод оксидом кальция и гидроксидом натрия ионы указанных тяжелых металлов, содержащиеся в стоках, связываются в труднорастворимые соединения. Состав солей зависит от рН среды. Так, при рН 7 осаждается гидроксид-сульфат цинка состава ZnSO4·3Zn(OH)2, а при повышении рН до 8,8 составу осадка соответствует формула ZnSO4•5Zn(OH)2. В сильнощелочной среде твердая фаза представляет собой в основном гидроксид.
|
При обработке стоков, содержащих соли цинка, гидроксидом натрия дозирование реагента необходимо проводить при строгом контроле за рН обрабатываемого стока с тем, чтобы не создать условий для растворения амфотерных гидроксидов. Выделение катионов Zn2+ щелочами основано на переводе их в труднорастворимый гидроксид цинка.
Осаждение гидроксида меди происходит при рН = 5,3.
Для удаления из сточных вод меди и кадмия разработан процесс контактирования их с диоксидом серы или сульфитами и порошкообразным металлом, например цинком или железом. При этом металл восстанавливает сульфиты до сульфидов, которые с тяжелыми металлами образуют труднорастворимые сульфиды. При рН = 2 и температуре сточных вод 50 °С, при которых проводится процесс, достигается высокая степень очистки.
Очистка сточных вод от никеля основана на выделении его из раствора в виде труднорастворимых соединений.
Для повышения степени очистки сточных вод, содержащих тяжелые металлы, предложено после осаждения их гидроксидов известью при рН = 8,5 и отделения осадка вводить в осветленную сточную воду раствор Na2SiO3 в количестве, в 5-30 раз превышающем стехиометрическую норму. После отделения осадка сточная вода с небольшим содержанием ионов тяжелых металлов может быть возвращена в систему оборотного водоснабжения.
Обработка сточных вод щелочными реагентами позволяет:
– снизить содержание тяжелых металлов в растворе до величин,
– сопоставимых с ПДК для водоемов санитарно-бытового пользования. Однако когда требуется более глубокая очистка, например, при непосредственном сбросе в рыбохозяйственные водоемы, очистка щелочными реагентами не дает необходимого эффекта.
Более глубокая очистка от тяжелых металлов достигается при обработке сточных вод сульфидом натрия. Это связано с тем, что растворимость сульфидов тяжелых металлов значительно меньше растворимости любых других труднорастворимых соединений – гидроксидов и карбонатов.
Осаждение сульфидов происходит при более низком значении рН, чем гидроксидов и карбонатов. Например, сульфид цинка осаждается при рН = 1,5, сульфиды никеля и кобальта при рН = 3,3.
Для удаления небольших количеств ионов тяжелых металлов, возможно, использовать пирит. Процесс можно проводить фильтрованием сточной воды через гранулированный пирит или непосредственным введением порошка в сточную воду. Кроме пирита для этой цели можно использовать сульфид любого другого нетоксичного металла, произведение растворимости которого больше произведения растворимости сульфида извлекаемого из сточной воды металла.
Для ускорения процесса коагуляции используют флокулянты, в основном полиакриламид. Добавка его в количестве 0,01% от массы сухого вещества увеличивает скорость выпадения осадков гидроксидов металлов в 2-3 раза.
Выше было отмечено, что реакции замещения протекают в определенном диапазоне рН. Для полного осаждения металлов не требуется доз реагентов, превышающих стехиометрическое количество.
Недостатком реагентной очистки сточных вод от ионов тяжелых металлов с отделением осадков является образование большого количества труднообезвоживаемого шлама. Кроме того, очищенная вода содержит большое количество солей кальция, поэтому ее трудно использовать в оборотном водоснабжении. Исходя из этого, предложено обрабатывать слив после отстаивания последовательно хлоридом кальция и содой. При этом происходит соосаждение карбонатов металлов с карбонатом кальция. Образующиеся кристаллические осадки карбонатов металлов имеют незначительный объем и легко обезвоживаются. Одновременно происходит умягчение воды слива, что создает возможность использования ее в системе оборотного водоснабжения.
Очистка от соединений мышьяка. Предельно допустимая концентрация мышьяка в водоемах равна 0,05 мг/л. Для очистки сточных вод от мышьяка применяют реагентные, сорбционные, электрохимические, экстракционные и другие методы. Выбор метода зависит от формы растворенного мышьяка, состава, кислотности и других показателей воды.
Для очистки больших объемов воды с высоким содержанием мышьяка практическое применение нашел метод химического его осаждения в виде труднорастворимых соединений (арсенаты и арсениты щелочноземельных и тяжелых металлов, сульфиды и триоксид мышьяка).
Для очистки от кислородсодержащих соединений мышьяка широко применяют известковое молоко. При этом в зависимости от состава сточных вод и условий очистки (рН, температура, расход реагента) выпадают в осадок арсенаты и арсениты различного состава. Присутствие в сточных водах ионов тяжелых металлов повышает степень очистки от мышьяка, так как происходит осаждение арсенатов и арсенитов этих металлов.
Из сильнокислых растворов мышьяк осаждают сульфидом натрия, сероводородом. Очистку сульфидно-щелочных сточных вод от мышьяка, входящего в состав анионов тиосолей, приводят сульфатом железа (железным купоросом).
Соединения пятивалентного мышьяка удаляются из сточных вод лучше, чем трехвалентного. Кроме того, хранение осадков, содержащих пятивалентный мышьяк, дешевле, так как он менее токсичен и менее растворим. Исходя из этого, соединения трехвалентного мышьяка перед осаждением окисляют до пятивалентного. В качестве окислителей используют хлорную известь, хлор, гипохлоритную пульпу, пероксид водорода, азотную кислоту, озон, пиролюзит и др.
После окисления мышьяка проводят его осаждение в виде арсенита марганца при нейтрализации гидроксидом кальция (известковым молоком) до рН = 6-9. Затем осадок отфильтровывают и захороняют в водонепроницаемых траншеях.
Стоки с небольшой концентрацией мышьяка окисляют путем фильтрования воды через слой пиролюзита. Осаждение проводят известковым молоком в присутствии фосфат-ионов.
Очистка от солей железа. Железо содержится в сточных водах химических, металлургических, машиностроительных, металлообрабатывающих, нефтехимических, текстильных, химико-фармацевтических и других производств. При содержании железа более 1 мг/л вода приобретает бурый цвет. При движении такой воды по трубопроводам на их стенках откладываются соединения железа и железобактерии, уменьшая сечение трубопровода.
Для обезжелезивания вод применяют аэрацию, реагентные методы, электродиализ, адсорбцию, обратный осмос.
В процессе аэрирования происходит окисление двухвалентного железа в трехвалентное. Реакция окисления в водном растворе протекает по схеме:
4Fe2++O2+2H2О = 4Fe3++4OH-,
Fe3++3H2O = Fe (OH) 3+3H+
или суммарно: 4Fе2++О2+10Н2О = 4Fе (ОН)3+8Н+.
Процесс аэрирования проводят в вентиляционной градирне. В том случае, когда необходимо обогащать воду кислородом и удалять часть свободного оксида углерода, используют градирни с хордовой насадкой, представляющей собой щиты из досок. После аэрирования необходимо отделить осадок гидроксида железа. Для этой цели используют процессы отстаивания и фильтрования. Осадок гидроксида железа можно использовать для приготовления красок или для очистки газов от сероводорода.
При высоком содержании железа в воде аэрационным методом его полностью удалить нельзя, поэтому применяют реагентные методы. Для этой цели используют хлор, хлорат кальция (хлорную известь), перманганат калия, озон, оксид кальция (известь), карбонат натрия (соду) и др. Реагенты дозируются в воду перед осветлителями или отстойниками. Если железо содержится в воде в виде органических соединений или коллоидных частиц, применяют озонирование.
Очистка от соединений марганца. Соединения марганца содержатся в сточной воде металлургических, машиностроительных и химических производств. При концентрации марганца более 0,05 мг/л вода окрашивается в темный цвет.
Удаление из воды марганца может быть достигнуто следующими методами:
1) обработкой воды перманганатом калия
2) аэрацией, совмещенной с известкованием;
3) фильтрованием воды через марганцевый песок или марганцевый катионит;
4) окислением озоном, хлором или диоксидом хлора.
Электрофлотаторы
Электрофлотаторы - модульные установки очистки воды (МУОВ) от тяжелых металлов, взвешенных и поверхностно-активных веществ (ПАВ) и нефтепродуктов для очистных сооружений сточных вод промышленных предприятий. Очищенная вода после электрофлотатора может быть сброшена в городскую канализацию либо, после дополнительной стадии обессоливания (коррекции анионного состава) на мембранной установке нанофильтрации / гиперфильтрации, направлена на повторное использование для оборотного водоснабжения предприятия.
Функционирование оборудования основано на процессе выделения пузыриков электролитических газов малого диаметра (20-70 мкм) в процессе электролиза сточной воды и эффекта флотации - всплыния нерастворимых загрязняющих веществ на поверхность сточной воды в электрофлотаторе.
Электрофлотаторы МУОВ включают в себя: корпус из полипропилена - высоконадежного и химически инертного иатериала, блок нерастворимых электродов на титановой основе, автоматическое скребковое устройство для сбора шлама с поверхности очищаемой воды, стабилизированный источник питания, крышку - зонт для подвода вытяжной вентиляции.
Электрофлотаторы обеспечивают работу очистных сооружений в непрерывном режиме (до 24 часов в сутки), не требует сменных элементов и расходных материалов. Оборудование предназначено для использования как на локальных очистных сооружения сточных вод, так и на общепромышленных станциях очистки и подготовки воды, и обеспечивает эффективное извлечение гидроксидов металлов Cu(OH)2, Ni(OH)2, Zn(OH)2, Cd(OH)2, Cr(OH)3, Al(OH)3, Pb(OH)2, Fe(OH)2, Fe(OH)2 Ca(OH)2, Mg(OH)2, взвешенных частиц, анионных и неионогенных СПАВ, нефтепродуктов в независимости от анионного состава очищаемой воды.
Метод электрокоагуляция
Узел электрокоагуляции
Сущность электрохимической обработки воды заключается в том, что при подаче напряжения постоянного тока на электроды начинается процесс растворения железных анодов. В результате электрохимической обработки в аппарате поз. ЭК осуществляется ряд процессов:
изменение дисперсного состояния примесей за счет их коагуляции под действием электрического поля продуктов электродных реакций и закрепление пузырьков электролитического газа на поверхности коагулирующих частиц, что обеспечивает их последующую флотацию;
сорбция тяжелых металлов на поверхности электролитически получаемых оксидов металлов;
химическое восстановление ионов Cr6+ до ионов Cr3+.
Образующиеся соединения нерастворимого гидроксида железа сорбируют на своей поверхности ионы тяжелых металлов и выпадают в осадок.
Исходные кислотно-щелочные воды поступают в сборник-накопитель Е0. Из накопителя Е0 насосом Н1 усредненный сток подается на электрокоагулятор ЭК, в котором по описанному выше механизму происходит восстановление ионов шестивалентного хрома и очистка от примесей тяжелых металлов. Предварительно из емкости Е2(Е3) дозирующим насосом НД1(НД2) подается раствор едкого натрия или кислоты для корректировки рН. Из электрокоагулятора водная суспензия направляется в отстойник поз.ТО для разделения суспензии на осветленную жидкость и осадок. Для ускорения процесса осаждения отстойник комплектуется тонкослойным модулем. Осветленная вода, сливается в емкость поз.Е1 и насосом Н2 подается на фильтр механической очистки Ф и затем на узел доочистки ИО, где с помощью ионного обмена вода очищается от следовых количеств тяжелых металлов, а затем направляется на слив в канализацию.
Осадок из электрокоагуляторов и отстойника поступает на фильтр-пресс поз. ФП, где обезвоживается, и с влажностью до 80% утилизируется.
Задача.
Рассчитать очистные сооружения (аэротенк - смеситель) для очистки сточных вод производства продуктов органического синтеза производительностью 120 м3/час. Концентрация загрязняющих веществ по БПК20 равняется 320 мг/л. Температура сточной воды 25 0С.
Решение:
Расчет аэротенков ведется согласно [1] и включает определение вместимости сооружения, объема требуемого воздуха и избыточного активного ила.
Принимаем двухступенчатую технологическую схему биологической очистки сточных вод. В качестве первой ступени принимаем аэротенк-смесители с регенерацией, обеспечивающие в нашем случае 70%-ный эффект снижения органических загрязнений.
БПКполн поступающих в аэротенк сточных вод с учетом рециркуляционного расхода определяется по формуле:
La1 = (La + Lt ∙ R) / (1 + R), (1)
где La1 - БПКполн поступающих в аэротенк сточных вод с учетом рециркуляционного расхода, мг/л;
La – БПКполн поступающей в аэротенк сточной воды, мг/л;
Lt - БПКполн очищенных сточных вод, мг/л;
R - степень рециркуляции активного ила.
БПКполн сточных вод после первой ступени биологической очистки составит:
L1 = La × (100-70) / 100, (2)
L1 = 320 × (100 - 70) / 100 = 96 мг/л.
Рассчитаем аэротенк-смеситель с регенератором. По данным [1] принимаем максимальную скорость окисления rмакс = 33 мг/(г×ч); константы KL= 3 мг/л и Ко = 1,81 мг/л; коэффициент ингибирования j = 0,17 л/г.
Принимаем зольность S = 0,3, концентрацию кислорода С = 3 мг/л. По опыту эксплуатации аналогичных сооружений задаемся средней дозой ила аср = 3,5 г/л, коэффициент регенерации Р = 0,3 и иловым индексом J =100 см3/г
Вместимость аэротенков определяют по среднечасовому поступлению сточных вод за период аэрации в часы притока. Степень рециркуляции активного ила вычисляется по формуле:
R = a / ((1000/J) - a), (3)
где R - степень рециркуляции активного ила;
J – иловый индекс, см3/г;
а - доза ила в аэротенке г/л.
R = 3,5 / ((1000/100) – 3,5) = 0,54
Определим скорость окисления в аэротенке-смесителе с регенератором по формуле:
, (4)
где rмакс – максимальная скорость окисления, мг/(г∙ч);
С – концентрация растворенного кислорода, мг/л.
= 32,2 мг/(г∙ч)
Продолжительность аэрации в аэротенке t, ч, вычисляется по формуле:
t = (La - Lt)/(a · (1 - S)) · р, (5)
где t – продолжительность аэрации в аэротенке, ч;
S - зольность ила;
La – БПКполн поступающей в аэротенк сточной воды, мг/л;
Lt - БПКполн очищенных сточных вод, мг/л;
а - доза ила в аэротенке г/л;
р – удельная скорость окисления, мг БПКполн на 1г беззольного вещества активного ила в 1 час.
t = (320 – 96) / (3, 5 · (1 – 0, 3)) · 32, 2 = 2, 84 ч
Вместимость аэротенков определяют по среднечасовому поступлению сточных вод за период аэрации в часы притока.
Нагрузка на 1 г беззольного вещества ила в сутки рассчитывается по формуле (мг/г сут.):
q ил = 24 · (La1-Lt)/(a · (1-S) · t), (6)
где La1 - БПКполн поступающих в аэротенк сточных вод с учетом рециркуляционного расхода, мг/л;
S - зольность ила;
Lt - БПКполн очищенных сточных вод, мг/л;
а - доза ила в аэротенке г/л;
t - продолжительность аэрации в аэротенках, ч.
q ил = 24 · (320 – 96)/(3,5 · (1 – 0,3) · 2,84) = 768 мг/г сут
По таблице СНиП 2.04.03-85 при qил = 12,52 мг/(г∙сут) иловый индекс составляет 120 см3/г [1]. Следовательно, в дальнейшем уточнение расчетных параметров нет необходимости.
Расчетный расход вод рассчитывается по формуле:
q расч. = К∙q ср., (7)
где К – общий максимальный коэффициент неравномерности водоотведения. К = 0,6 [1].
q расч. = 0,6 ∙ q ср, (8)
q расч. = 0,6 × 120 = 72 м3/ч
Объем аэротенка Va, м3, согласно [1], рассчитывается по формуле:
Va = t · (1+R) ∙q расч., (9)
где t - продолжительность аэрации в аэротенке, ч;
R - степень рециркуляции активного ила;
q расч - расчетный расход сточной воды, м3/ч.
Va = 2,84 · (1+0,54) ∙ 72 = 315 м3.
Принимаем объем аэротенка в соответствии [1]. Типовой проект аэротенка – смесителя 902-2-215/216, рабочий объем 864 м3, глубина – 4,5 м, ширина коридора – 4, число коридоров - 2.
Площадь аэротенка по найденному объему Vа и глубине вычисляется по формуле:
F = Vа / H, (10)
F = 864 / 4, 5 = 192 м2.
Длина коридора аэротенка рассчитывается по формуле:
la = F/B, (11)
где F - площадь аэротенка, м2;
В – ширина аэротенка, м.
la = 192 / 8 = 24 м.
Удельный расход воздуха qair, м3 /м3 очищаемой воды, при пневматической системе аэрации надлежит определять по формуле
где qO - удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15-20 мг/л - 1,1, при очистке до БПКполн свыше 20 мг/л - 0,9;
K1 - коэффициент, учитывающий тип аэратора и принимаемый для мелкопузырчатой аэрации в зависимости от соотношения площадей аэрируемой зоны и аэротенка faz/fat по табл. 42[1]; для среднепузырчатой и низконапорной K1 = 0,75;
K2 - коэффициент, зависимый от глубины погружения аэраторов ha и принимаемый по табл. 43[1];
KТ – коэффициент, учитывающий температуру сточных вод, который следует определять по формуле
КТ = 1 + 0,02 (ТW-20), (13)
где Tw - среднемесячная температура воды за летний период, °С;
K3 - коэффициент качества воды, принимаемый для городских сточных вод 0,85; при наличии СПАВ принимается в зависимости от величины faz/fat по табл. 44, для производственных сточных вод - по опытным данным, при их отсутствии допускается принимать К3 = 0,7;
(14) |
Сa - растворимость кислорода воздуха в воде, мг/л,
где CT - растворимость кислорода в воде в зависимости от температуры и атмосферного давления, принимаемая по справочным данным;
ha - глубина погружения аэратора, м;
СO - средняя концентрация кислорода в аэротенке, мг/л; в первом приближении CO допускается принимать 2 мг/л.
Са=
КТ = 1 + 0,02 (25 - 20) = 1,1
м3 / м3
Интенсивность аэрации Ja, м3 /(м2·ч), надлежит определять по формуле
(15) |
где Hat - рабочая глубина аэротенка, м;
tat - период аэрации, ч.
= 31,1 м3 /(м2·ч)
Вычисленная интенсивность аэрации свыше Ja,min для принятого значения Ki, менее Ja, max для принятого значения К2. Следовательно, в дальнейшем уточнение расчетных параметров нет необходимости.
Используемая литература
1. СНиП 2.04.03-85. Канализация. Наружные сети и сооружения. – М.: Стройиздат, 1986. - 140 с.
2. Ласков Ю.М., Воронов Ю.В., Калицун В.И. Примеры расчетов канализационных сооружений: Учеб. пособие для вузов. – М.: Стройиздат, 1987. - 255 с.
3. Яковлев С.В., Карелин Я.А., Ласков Ю.М. Очистка производственных сточных вод: Учеб. пособие для вузов. – М.: Стройиздат, 1979. – 320 с.
4. Зацепина М.В. Курсовое и дипломное проектирование водопроводных и канализационных сетей и сооружений: Учеб. пособие для техникумов. – Л.: Стройиздат, 1981. - 176 с.
5. Когановский А.М. и др. Очистка и использование сточных вод в промышленном водоснабжении. М.: Химия, 1983. – 288 с.