Тема: Постулаты специальной теории относительности.




Тема: Постулаты специальной теории относительности.

Цель: разобрать постулаты теории относительности Эйнштейна

Основные вопросы, рассматриваемые в теме: событие, постулат, собственная инерциальная система отсчёта, собственное время, собственная длина тела, масса покоя, инвариант; причины появления СТО; постулаты СТО: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Глоссарий:

Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

Событие - физическое явление, которое происходит в определённый момент времени в данной точке пространства.

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными.

Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции.

Два постулата теории:

1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта.

2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов.

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем.

Длину тела L0, относительно которого оно в ИСО находится в покое называют собственной длиной.

Массой покоя m0, называют массу тела в состоянии покоя относительно ИСО.

Скорость света c и собственное время Δτ инвариантны в любых ИСО.

 

Теоретический материал для самостоятельного изучения

Человек, открывший новый взгляд на пространство и время мыслил образами. Альберт Эйнштейн всегда твёрдо верил, что именно воображение способно проникнуть в суть, в глубину, в основу сущего. Он никогда не заучивал теорию, он представлял её образами. В детстве Эйнштейну привили интерес к математике, естествознанию. Одной из любимых книг Альберта была книга Аарона Бернштейна «Популярные книги по естественной истории». От описаний научных историй у 12 летнего Эйнштейна захватывало дух. Мысленные эксперименты были самым занимательным в книгах Бернштейна.

В 1895 году Эйнштейну повезло, в 16-летнем возрасте, провалив экзамены в Цюрихский политехникум по французскому языку, литературе, политике и зоологии, но легко справившись с математикой и естествознанием, он поступил в сельскую школу Арау. Образование здесь строилось на методах, разработанных Иоганном Песталоцци, на проведении мысленных экспериментов, на более глубоком понимании явлений и ситуаций. Это были первые шаги на пути формирования специальной теории относительности (СТО).

Теория относительности – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

В теории относительности часто будет использовано понятие «событие». Событием будем называть физическое явление, которое происходит в определённый момент времени в данной точке пространства.

В движущемся поезде, вывешенная в центре, вспыхивает лампочка в точке О – это одно событие. Свет от лампочки достигает точку А в одном конце помещения – это другое событие, а также достигает противоположного конца помещения в точке В – то третье событие.

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными. При этом учитываем, чтореальные тела имеют размерыи события разворачиваются во времени.

Одновременно ли достигнет свет две противолежащие точки А и В? Ведь корабль движется со скоростью в одном направлении и одна стенка приближается к летящему свету, а другая отдаляется.

Классический закон сложения скоростей не работает в описании распространения электромагнитного излучения от источника света.

Чтобы ответить на эти вопросы, необходимо выяснить, меняются ли основные законы электродинамики при переходе одной инерциальной системы отсчёта к другой, или же подобно принципам относительности Галилея и законам Ньютона, они остаются неизменными.

Принцип относительности Галилея.

Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции. Системы, которые ускоряются или вращаются называют неинерциальными. Система отсчёта, движущаяся равномерно и прямолинейна относительно ИСО, также инерциальная. Земля не совсем инерциальная система отсчёта, так как она вращается, но для большинства наших примеров, будем считать её инерциальной.

К началу XX века в физике накопилось много наблюдений и опытов, которые не могли быть объяснены классическими теориями. В XVII – XIX веках большое место в теории отводилось гипотезе о существовании эфира. Эфир представляли себе, как занимающая всё пространство упругая среда, с помощью которой осуществляется взаимодействие между телами, благодаря которой распространяются волны звуковые, световые, электромагнитные. Считалось естественным связывать абсолютную систему отсчёта с мировым эфиром. Этой теории придерживался и основатель электронной теории Х. Лоренц и Г.Герц. Однако эксперименты, поставленные в 1881 году учёными А. Майкельсоном, Э.Морли и А.Физо об изотропности света, приводили к противоположным результатам. В опытах по изучению распространения света, А.Физо с помощью оптических приборов находил подтверждение, существования эфира. Опыты Майкельсона существование «эфирного ветра», то есть преимущественной системы отсчёта или «светового эфира» не подтверждали, за что подверглись критике со стороны прославленного учёного Х.Лоренца.

Но противоречия в опытах классическими законами уже невозможно было объяснить. Эйнштейн, изменяя классические законы механики, а не законы электродинамики Максвелла, предложил наиболее революционный способ описания явлений в пространстве и времени. Из теории Максвелла следовало, что электромагнитные волны, в отличие от механических волн, могут распространяться в вакууме и подчиняются законам электромагнетизма, что свет – это электромагнитная волна и скорость света:

У Максвелла не было оговорок по поводу относительности скорости света.

И в 1905 году появилась работа А. Эйнштейна «К электродинамике движущихся сред», в которой излагались идеи новой теории – специальной теории относительности.

 

В основу теории были положены два постулата*:

1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта, или никакими опытами, проводимыми в инерциальной системе отсчёта, невозможно установить её движение относительно других инерциальных систем.

2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта. Она не зависит от ни от скорости источника света, ни от скорости светового приёмника сигнала.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов. В физической теории выполняет ту же роль, что и аксиома в математике.

Скорость света занимает особое положение в этой теории, распространение света в вакууме является максимально возможной скоростью передачи взаимодействий в природе.

С точки зрения классической физики первый и второй постулаты входят в противоречия друг с другом. По первому постулату законы механики (как частный случай законов физики) справедливы во всех ИСО. Следовательно, справедлив и закон сложения скоростей. Однако второй постулат противоречит классическому закону сложения скоростей. Значит, в СТО нельзя пользоваться преобразованиями Галилея. Заменив преобразования Галилея на преобразования Лоренца, Эйнштейн устранил кажущееся противоречие между постулатами, что позволило объяснить многие опыты по электродинамике и оптике.

Независимость скорости света от источника много раз проверялись на опытах. Советские учёные А.М. Бонч-Бруевич и В.А. Молчанов в 1955 году проводили опыты, измеряя скорости света от правого и левого краёв Солнца (один из которых из-за осевого вращения Солнца приближается к нам со скоростью 2,3 км/с, а другой с такой же скоростью удаляется). Учёные, проведя расчёты, пришли к выводу, что скорости распространения света с обоих концов одинаковы.

Преобразования Лоренца, которые использовал Эйнштейн, заменив преобразования Галилея, для описания распространения света в системе координат:

Если скорость намного меньше скорости света , то отношение квадратичной скорости движения системы к квадрату скорости света намного меньше 1 и величиной можно пренебречь. Тогда мы переходи к преобразованиям Галилея:

Новая теория раскрыла более глубокую физическую реальность и включает старую как предельный (частный) случай, который называют принципом соответствия.

Иначе это можно объяснить так: классическая механика (механика Ньютона) является частным случаем более общей механики, описывающих процессы в разных инерциальных системах отсчёта с учётом преобразований Лоренца.

Мы ещё неоднократно убедимся, что при малых скоростях, намного меньших, чем скорость света законы СТО переходят в законы классической механики.

Существование предельной конечной скорости изменяет наши привычные представления о пространстве и времени. Представление об абсолютном времени, которое течёт с навсегда заданным темпом, оказывается неверным.

Следствия постулатов относительности:

1. Относительность одновременности

Рассмотрим простой метод синхронизации часов. Допустим, что космонавт хочет узнать, одинаково ли идут часы в разных концах корабля в точках А и В. С помощью источника света в центре корабля производят вспышку света, если часы идут синхронно, по показания на часах будут одинаковы при приёме света. Но так будет только в движущейся системе отсчёта К1, связанной с кораблём. И так же, как и в первом случае, вспышка для наблюдателя, находящегося в системе отсчёта К (неподвижная система), часы будут удалятся от вспышки света, и излучению нужно пройти большее расстояние, значит и время должно зафиксироваться отличное от часов в точке В. Вывод наблюдателя в системе отсчёта К: сигналы достигают часов не одновременно.

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем и обозначают буквой τ (тау).Промежуток времени между событиями по часам наблюдателя, находящегося внутри объекта (ИСО К1). Промежуток времени между теми же событиями по часам наблюдателя относительно которой удаляется обозначим Δt. Между этими промежутками существует соотношение:

Это означает, что часы, движущиеся относительно ИСО идут медленнее, неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Преобразовав выражение Δt, получим:

А так как скорость света c постоянна и собственное время Δτ неизменно для данного события, то есть инвариантны, то получим:

Наряду с протонами и нейтронами в природе существуют мюоны – элементарные частицы. Мюоны могут образовываться в атмосфере Земли. Но мюоны не стабильны и довольно быстро распадаются, превращаясь в другие элементарные частицы. В лаборатории, где мюоны практически покоятся, среднее время их жизни Δτ =2·10-6с. Вычисляя скорость и другие параметры мюонов, физики обнаружили, что мюоны в атмосфере Земли (без распада) могут пройти расстояние 6 км за время Δt =2·10-5с. Это означает, что время жизни движущегося мюона в системе «Земля» в 10 раз больше собственного времени жизни Δτ.

Рассмотрим ещё один парадокс: относительность расстояний или размеров тела. Допустим, что в космическом корабле измеряют длину стержня, расположенного вдоль направления скорости. Длину стержня внутри корабля, относительно которого он находится в покое обозначим L0 и назовём собственной длиной. При этом расчёты показывают, что линейный размер тела, движущегося относительно ИСО уменьшается в направлении движения.

Закон сложения скоростей в СТО записывается так:

𝟅 – скорость тела, относительно неподвижной системы отсчёта,

𝟅´ - скорость относительно подвижной системы отсчёта,

v – скорость подвижной системы отсчёта относительно неподвижной,

c – скорость света.

При скоростях движения намного меньших, чем скорость света закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчёта.

Даже масса, такое непоколебимое в нашем представлении значение, меняет свои параметры в движущейся системе относительно неподвижной ИСО. Собственную массу тела, находящегося в состоянии покоя, относительно ИСО, называют m0 массой покоя.

Сам А. Эйнштейн говорил о том, что правильнее было бы называть его теорию относительности теорией абсолютности, так как в основе её заложена идея абсолютности во всех инерциальных системах отсчёта.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-01-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: