Аддитивная и мультипликативная модели временного ряда




Моделирование колебаний

Моделирование сезонных и циклических колебаний

Аддитивная и мультипликативная модели временного ряда

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Моделирование циклических колебаний в целом осуществляется аналогично моделированию сезонных колебаний, поэтому мы рассмотрим только методы моделирования последних.

Простейший подход – расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой , сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги.

  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты .
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или в мультипликативной модели.
  4. Аналитическое выравнивание уровней или и расчет значений с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений или .
  6. Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Подробнее методику построения каждой из моделей рассмотрим на примерах.


Пример 3. Построение аддитивной модели временного ряда.

Обратимся к данным об объеме потребления электроэнергии жителями района за последние четыре года, представленным в табл. 3.

В примере 2 было показано, что данный временной ряд содержит сезонные колебания периодичностью 4. Объемы потребления электроэнергии в осенне-зимний период времени (I и IV кварталы) выше, чем весной и летом (II и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это свидетельствует о возможном существовании в ряде аддитивной модели. Рассчитаем ее компоненты.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого найдем уже центрированные четырехчленные скользящие средние по формулам: , и т.д.

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними.

Таблица 5

Расчет оценок сезонной компоненты в аддитивной модели

№ квартала Потребление электроэнергии Центрированная скользящая средняя Оценка сезонной компоненты
   
  6,0    
  4,4    
  5,0 6,250 -1,250
  9,0 6,450 2,550
  7,2 6,625 0,575
  4,8 6,875 -2,075
  6,0 7,100 -1,100
  10,0 7,300 2,700
  8,0 7,450 0,550
  5,6 7,625 -2,025
  6,4 7,875 -1,475
  11,0 8,125 2,875
  9,0 8,325 0,675
  6,6 8,375 -1,775
  7,0    
  10,8    

Используем эти оценки для расчета значений сезонной компоненты (табл. 6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю .

Для данной модели имеем: .


Определим корректирующий коэффициент:

.

Рассчитаем скорректированные значения сезонной компоненты как разность между ее средней оценкой и корректирующим коэффициентом :

.

Таблица 6



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: