В соответствии с ТИ при математическом моделировании реального явления или процесса следует прежде всего установить типы шкал, в которых измерены те или иные переменные. Тип шкалы задает группу допустимых преобразований шкалы. Допустимые преобразования не меняют соотношений между объектами измерения. Например, при измерении длины переход от аршин к метрам не меняет соотношений между длинами рассматриваемых объектов - если первый объект длиннее второго, то это будет установлено и при измерении в аршинах, и при измерении в метрах. Обратите внимание, что при этом численное значение длины в аршинах отличается от численного значения длины в метрах - не меняется лишь результат сравнения длин двух объектов.
Укажем основные виды шкал измерения и соответствующие группы допустимых преобразований.
В шкале наименований (другое название этой шкалы - номинальная; это - переписанное русскими буквами английское название шкалы) допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются лишь как метки. Примерно так же, как при сдаче белья в прачечную, т.е. лишь для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Номера страховых свидетельств государственного пенсионного страхования, медицинского страхования, ИНН (индивидуальный номер налогоплательщика) измерены в шкале наименований. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Никому в здравом уме не придет в голову складывать или умножать номера телефонов, такие операции не имеют смысла. Сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Во многих случаях только это от них и требуется. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел.
|
В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго возрастающие преобразования.
Установление типа шкалы, т.е. задания группы допустимых преобразований шкалы измерения - дело специалистов соответствующей прикладной области. Так, оценки привлекательности профессий мы в монографии [2], выступая в качестве социологов, считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с нами, полагая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.
|
Оценки экспертов, как уже отмечалось, часто следует считать измеренными в порядковой шкале. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.
Почему мнения экспертов естественно выражать именно в порядковой шкале? Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.
В различных областях человеческой деятельности применяется много других видов порядковых шкал. Так, например, в минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Минерал с большим номером является более твердым, чем минерал с меньшим номером, при нажатии царапает его.
Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. Очевидно, нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком - такое бывает и в Москве) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).
В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону), и т.д. Все эти шкалы построены по схеме: заболевание не обнаружено; первая стадия заболевания; вторая стадия; третья стадия… Иногда выделяют стадии 1а, 1б и др. Каждая стадия имеет свойственную только ей медицинскую характеристику. При описании групп инвалидности числа используются в противоположном порядке: самая тяжелая - первая группа инвалидности, затем - вторая, самая легкая - третья.
|
Номера домов также измерены в порядковой шкале - они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.
При оценке качества продукции и услуг, в т. н. квалиметрии (буквальный перевод: измерение качества) популярны порядковые шкалы. А именно, единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) - есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Аналогичный смысл имеет сортность продукции - высший сорт, первый сорт, второй сорт,…
При оценке экологических воздействий первая, наиболее обобщенная оценка - обычно порядковая, например: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье.
Порядковая шкала используется и во многих иных областях. В эконометрике это прежде всего различные методы экспертных оценок (см. посвященную им главу 12).
Все шкалы измерения делят на две группы - шкалы качественных признаков и шкалы количественных признаков.
Порядковая шкала и шкала наименований - основные шкалы качественных признаков. Поэтому во многих конкретных областях результаты качественного анализа можно рассматривать как измерения по этим шкалам.
Шкалы количественных признаков - это шкалы интервалов, отношений, разностей, абсолютная. По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0С = 5/9 (0F - 32), где 0С - температура (в градусах) по шкале Цельсия, а 0F - температура по шкале Фаренгейта.
Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений. В них есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Примером является пересчет цен из одной валюты в другую по фиксированному курсу. Предположим, мы сравниваем экономическую эффективность двух инвестиционных проектов, используя цены в рублях. Пусть первый проект оказался лучше второго. Теперь перейдем на валюту самой экономически мощной державы мира - юани, используя фиксированный курс пересчета. Очевидно, первый проект должен опять оказаться более выгодным, чем второй. Это очевидно из общих соображений. Однако алгоритмы расчета не обеспечивают автоматически выполнения этого очевидного условия. Надо проверять, что оно выполнено. Результаты подобной проверки для средних величин описаны ниже.
В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей, если год (или сутки - от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета указать нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии, разработанной группой акад. РАН А.Т. Фоменко, Господь Иисус Христос родился примерно в 1054 г. по принятому ныне летоисчислению в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).
Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.
В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.
Инвариантные алгоритмы и средние величины
Основное требование к алгоритмам анализа данных формулируется в ТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных. Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы.
Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) - в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т.е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т.е. когда они инвариантны относительно допустимого преобразования шкалы.
Оказывается, сформулированное условие является достаточно сильным. Из многих алгоритмов эконометрического анализа данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.
Пусть Х1, Х2,…, Хn - выборка объема n. Часто используют среднее арифметическое
Использование среднего арифметического настолько привычно, что второе слово в термине часто опускают. И говорят о средней зарплате, среднем доходе и других средних для конкретных экономических данных, подразумевая под "средним" среднее арифметическое. Такая традиция может приводить к ошибочным выводам. Покажем это на примере расчета средней заработной платы (среднего дохода) работников условного предприятия (табл.1).
Табл.1. Численность работников различных категорий, их заработная плата и доходы (в условных единицах).
№ п/п | Категория работников | Число работников | Заработная плата | Суммарные доходы |
Низкоквалифицированные рабочие | ||||
Высококвалифицированные рабочие | ||||
Инженеры и служащие | ||||
Менеджеры | ||||
Генеральный директор (владелец) | ||||
Всего |
Первые три строки в табл.1 вряд ли требуют пояснений. Менеджеры - это директора по направлениям, а именно, по производству (главный инженер), по финансам, по маркетингу и сбыту, по персоналу (по кадрам). Владелец сам руководит предприятием в качестве генерального директора. В столбце "заработная плата" указаны доходы одного работника соответствующей категории, а в столбце "суммарные доходы" - доходы всех работников соответствующей категории.
Фонд оплаты труда составляет 40000 единиц, работников всего 100, следовательно, средняя заработная плата составляет 40000/100 = 400 единиц. Однако эта средняя арифметическая величина явно не соответствует интуитивному представлению о "средней зарплате". Из 100 работников лишь 5 имеют заработную плату, ее превышающую, а зарплата остальных 95 существенно меньше средней арифметической. Причина очевидна - заработная плата одного человека - генерального директора - превышает заработную плату 95 работников - низкоквалифицированных и высококвалифицированных рабочих, инженеров и служащих.
Ситуация напоминает описанную в известном рассказе о больнице, в которой 10 больных, из них у 9 температура 40 0С, а один уже отмучился, лежи в морге с температурой 0 0С. Между тем средняя температура по больнице равна 36 0С - лучше не бывает!
Сказанное показывает, что среднее арифметическое можно использовать лишь для достаточно однородных совокупностей (без больших выбросов в ту или иную сторону). А какие средние использовать для описания заработной платы? Вполне естественно использовать медиану. Для данных табл.1 медиана - среднее арифметическое 50-го и 51-го работника, если их заработные платы расположены в порядке неубывания. Сначала идут зарплаты 40 низкоквалифицированных рабочих, а затем - с 41-го до 70-го работника - заработные платы высококвалифицированных рабочих. Следовательно, медиана попадает именно на них и равна 200. У 50-ти работников заработная плата не превосходит 200, и у 50-ти - не менее 200, поэтому медиана показывает "центр", около которого группируется основная масса исследуемых величин. Еще одна средняя величина - мода, наиболее часто встречающееся значение. В рассматриваемом случае это заработная плата низкоквалифицируемых рабочих, т.е.100. Таким образом, для описания зарплаты имеем три средние величины - моду (100 единиц), медиану (200 единиц) и среднее арифметическое (400 единиц). Для наблюдающихся в реальной жизни распределений доходов и заработной платы справедлива та же закономерность: мода меньше медианы, а медиана меньше среднего арифметического.
Для чего в экономике используются средние величины? Обычно для того, чтобы заменить совокупность чисел одним числом, чтобы сравнивать совокупности с помощью средних.
Пусть, например, Y1, Y2,...,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,...,Zn - второму (другому варианту такого развития). Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям.
А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,...,Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,...,Xn, и не больше, чем максимальное из этих чисел. Все перечисленные выше виды средних являются средними по Коши.
При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в ТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.
Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:
f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn).
Тогда согласно ТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство
f(g(Y1), g(Y2),...,g(Yn)) < f(g(Z1), g(Z2),...,g(Zn)).
т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Ynи Z1, Z2,...,Zn и, напомним, любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно ТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.
С помощью математической теории, развитой в монографии [2], удается описать вид допустимых средних в основных шкалах. Сразу ясно, что для данных, измеренных в шкале наименований, в качестве среднего годится только мода.