Биномиальное распределение случайной величины




Понятие биноминального распределения, характеристики биноминального распределения.

Конкретные законы распределения случайных величин

 

Виды законов распределения дискретных случайных величин

 

Пусть дискретная случайная величина может принимать значения х 1, х 2, …, хn, …. Вероятности этих значений могут быть вычислены по различным формулам, например, при помощи основных теорем теории вероятностей, формулы Бернулли или по каким-то другим формулам. Для некоторых из этих формул закон распределения имеет свое название.

Наиболее часто встречающимися законами распределения дискретной случайной величины являются биномиальный, геометрический, гипергеометрический, закон распределения Пуассона.

 

Биномиальный закон распределения

 

Пусть производится n независимых испытаний, в каждом из которых может появиться или не появиться событие А. Вероятность появления этого события в каждом единичном испытании постоянна, не зависит от номера испытания и равна р = Р (А). Отсюда вероятность не появления события А в каждом испытании также постоянна и равна q =1– р. Рассмотрим случайную величину Х равную числу появлений события А в n испытаниях. Очевидно, что значения этой величины равны

х 1=0 – событие А в n испытаниях не появилось;

х 2=1 – событие А в n испытаниях появилось один раз;

х 3=2 – событие А в n испытаниях появилось два раза;

…………………………………………………………..

хn +1 = n – событие А в n испытаниях появилось все n раз.

Вероятности этих значений могут быть вычислены по формуле Бернулли (4.1):

, (7.1)

где к =0, 1, 2, …, n.

Биномиальным законом распределения называется распределение дискретной случайной величины Х, равной числу успехов в n испытаниях Бернулли, с вероятностью успеха р.

Итак, дискретная случайная величина имеет биномиальное распределение (или распределена по биномиальному закону), если ее возможные значения 0, 1, 2, …, n, а соответствующие вероятности вычисляются по формуле (7.1).

Биномиальное распределение зависит от двух параметров р и n.

Ряд распределения случайной величины, распределенной по биномиальному закону, имеет вид:

Х     k n
Р

 

Пример 7.1. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,4. Случайная величина Х – число попаданий в мишень. Построить ее ряд распределения.

Решение. Возможными значениями случайной величины Х являются х 1=0; х 2=1; х 3=2; х 4=3. Найдем соответствующие вероятности, используя формулу Бернулли. Нетрудно показать, что применение этой формулы здесь вполне оправдано. Отметим, что вероятность не попадания в цель при одном выстреле будет равна 1-0,4=0,6. Получим

Ряд распределения имеет следующий вид:

Х        
Р 0,216 0,432 0,288 0,064

Нетрудно проверить, что сумма всех вероятностей равна 1. Сама случайная величина Х распределена по биномиальному закону. ■

Найдем математическое ожидание и дисперсию случайной величины, распределенной по биномиальному закону.

Биномиальное распределение случайной величины

Теперь рассмотрим ситуацию под другим углом. Действительно, кому интересно, что среднее выпадение орлов при одном бросании равно 0,5? Это даже невозможно представить. Интересней поставить вопрос о числе выпадения орлов при заданном количестве подбрасываний.

Другими словами, исследователя часто интересует вероятность наступления некоторого числа успешных событий. Это может быть количество бракованных изделий в проверяемой партии (1- бракованная, 0 - годная) или количество выздоровлений (1 – здоров, 0 – больной) и т.д. Количество таких «успехов» будет равно сумме всех значений переменной X, т.е. количеству единичных исходов.

Случайная величина B называется биномиальной и принимает значения от 0 до n (при B = 0 - все детали годные, при B = n – все детали бракованные). Предполагается, что все значения x независимы между собой. Рассмотрим основные характеристики биномиальной переменной, то есть установим ее математическое ожидание, дисперсию и распределение.

Матожидание биномиальной переменной получить очень легко. Вспомним, что математическое ожидание суммы величин есть сумма математических ожиданий каждой складываемой величины, а оно у всех одинаковое, поэтому:

Например, математическое ожидание количества выпавших орлов при 100 подбрасываниях равно 100 × 0,5 = 50.

Теперь выведем формулу дисперсии биномиальной переменной. Дисперсия суммы независимых случайных величин есть сумма дисперсий. Отсюда

Среднее квадратическое отклонение, соответственно

Для 100 подбрасываний монеты среднеквадратическое отклонение равно

И, наконец, рассмотрим распределение биномиальной величины, т.е. вероятности того, что случайная величина B будет принимать различные значения k, где 0≤ k ≤n. Для монеты эта задача может звучать так: какова вероятность выпадения 40 орлов при 100 бросках?

Чтобы понять метод расчета, представим, что монета подбрасывается всего 4 раза. Каждый раз может выпасть любая из сторон. Мы задаемся вопросом: какова вероятность выпадения 2 орлов из 4 бросков. Каждый бросок независим друг от друга. Значит, вероятность выпадения какой-либо комбинации будет равна произведению вероятностей заданного исхода для каждого отдельного броска. Пусть О – это орел, Р – решка. Тогда, к примеру, одна из устраивающих нас комбинаций может выглядеть как ООРР, то есть:

Вероятность такой комбинации равняется произведению двух вероятностей выпадения орла и еще двух вероятностей не выпадения орла (обратное событие, рассчитываемое как 1 - p), т.е. 0,5×0,5×(1-0,5)×(1-0,5)=0,0625. Такова вероятность одной из устраивающих нас комбинации. Но вопрос ведь стоял об общем количестве орлов, а не о каком-то определенном порядке. Тогда нужно сложить вероятности всех комбинаций, в которых присутствует ровно 2 орла. Ясно, все они одинаковы (от перемены мест множителей произведение не меняется). Поэтому нужно вычислить их количество, а затем умножить на вероятность любой такой комбинации. Подсчитаем все варианты сочетаний из 4 бросков по 2 орла: РРОО, РОРО, РООР, ОРРО, ОРОР, ООРР. Всего 6 вариантов.

Следовательно, искомая вероятность выпадения 2 орлов после 4 бросков равна 6×0,0625=0,375.

Однако подсчет подобным образом утомителен. Уже для 10 монет методом перебора получить общее количество вариантов будет очень трудно. Поэтому умные люди давно изобрели формулу, с помощью которой рассчитывают количество различных сочетаний из n элементов по k, где n – общее количество элементов, k – количество элементов, варианты расположения которых и подсчитываются. Формула сочетания из n элементов по k такова:

Подобные вещи проходят в разделе комбинаторики. Всех желающих подтянуть знания отправляю туда. Отсюда, кстати, и название биномиального распределения (формула выше является коэффициентом в разложении бинома Ньютона).

Формулу для определения вероятности легко обобщить на любое количество n и k. В итоге формула биномиального распределения имеет следующий вид.

Словами: количество подходящих под условие комбинаций умножить на вероятность одной из них.

Для практического использования достаточно просто знать формулу биномиального распределения. А можно даже и не знать – ниже показано, как определить вероятность с помощью Excel. Но лучше все-таки знать.

Рассчитаем по этой формуле вероятность выпадения 40 орлов при 100 бросках:

Или всего 1,08%. Для сравнения вероятность наступления математического ожидания этого эксперимента, то есть 50 орлов, равна 7,96%. Максимальная вероятность биномиальной величины принадлежит значению, соответствующему математическому ожиданию.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: