Группы крови и реакция агглютинации. Значение переливания крови.




Группы крови — нормальные передающиеся по наследству различные иммунологические признаки крови. На основании этих признаков всех людей подразделяют на четыре группы вне зависимости от расовой принадлежности, возраста и пола. Группа крови у человека остается постоянной в течение всей его жизни. Люди одной группы крови отличаются от людей других групп крови наличием или отсутствием у них агглютиногенов (А и В), содержащихся в эритроцитах, и агглютининов α и β, содержащихся в сыворотке.

Группы крови системы AB0: 0(I) группа крови содержит агглютинины α и β, агглютиногены в ней отсутствуют; А (II) группа крови — агглютинин α и агглютиноген А; В(III) группа крови—агглютинина и агглютиноген В; AB(IV) группа крови — содержит агглютиногены А и В, агглютинины отсутствуют.

Реципиент — человек, которому переливают кровь, донор — человек, дающий свою кровь для переливания. Идеально совместимой для реципиента является кровь такой же группы. Кровь абсолютно несовместима, если у реципиента имеются агглютинины к эритроцитам донора, так как в этих случаях происходит соединение агглютиногена А одной крови с агглютинином а другой или агглютиногена В с агглютинином β. Развивается так называемая агглютинация, т. е. склеивание эритроцитов в маленькие и большие комочки. Переливание несовместимой крови приводит к тяжелым последствиям и может быть причиной смерти. Реципиенту 0(I) группы нельзя переливать кровь никакой другой группы, кроме той же. У реципиента AB(IV) группы никаких агглютининов нет, поэтому ему можно переливать кровь всех групп. Реципиент AB(IV) группы — универсальный реципиент. Кровь 0(I) группы можно перелить людям с любой группы крови. Поэтому людей с 0(I) группой называют универсальными донорами. В нашей стране организована сеть станций переливания крови, где хранится кровь и производится ее взятие у лиц, пожелавших сдать кровь.

Переливание крови. Перед переливанием определяется группа крови донора и реципиента, Rh-принадлежность крови донора и реципиента, ставится проба на индивидуальную совместимость. Кроме того, в процессе переливания крови производят пробу на биологическую совместимость. Следует помнить, что переливать можно только кровь соответствующей группы. Например, реципиенту, имеющему II группу крови, можно переливать только кровь II группы. По жизненным показаниям возможно переливание крови I группы лицам с любой группой крови, но только в небольших количествах.

Переливание крови осуществляется в зависимости от показаний капельно (со скоростью в среднем 40— 60 капель в минуту) или струйно. Во время переливания крови врач следит за состоянием реципиента и при ухудшении состояния больного (озноб, боль в пояснице, слабость и т. д.) переливание прекращают.

Кровезамещающие жидкости (кровезаменители) — растворы, которые применяются вместо крови или плазмы для лечения некоторых заболеваний, дезинтоксикации (обезвреживания), замещения потерянной организмом жидкости или для коррекции состава крови. Наиболее простым кровезамещающим раствором является изоосмотический раствор хлорида натрия (0,85—0,9%). К плазмозаменителям относятся: коллоидные синтетические препараты, которые оказывают онкотическое действие (полиглюкин, желатиноль, гексаэтилкрахмалы), препараты, имеющие реологические свойства, т.е. улучшающие микроциркуляцию (реополиглюкин, реамберин), дезинтоксикационные препараты (неогемодез, реосорбилакт, сорбилакт).

18.Система агглютиногенов АВО. Определение группы крови. Классические и современные правила переливания крови. Резус-фактор и резус-несовместимость. Другие системы агглютиногенов:

В эритроцитах человека обнаружены два агглютиногена (А и В), в плазме - два агглютинина - а (альфа) и b (бета).

Агглютиногены — антигены, участвующие в реакции агглютинации. Агглютинины — антитела, агглютинирующие антигены — представляют собой видоизмененные белки глобулиновой фракции. Агглютинация происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином, то есть агглютиноген А с агглютинином а, или агглютиноген В с агглютинином b. При переливании несовместимой крови в результате агглютинации эритроцитов и последующего их гемолиза (разрушения) развивается тяжелое осложнение — гемотрансфузионный шок, который может привести к смерти.

Согласно классификации чешского ученого Янского, различают 4 группы крови в зависимости от наличия или отсутствия в эритроцитах агглютиногенов, а в плазме агглютининов:

I группа — в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины аиb.

II группа — в эритроцитах находится агглютиноген А, в плазме агглютинин b.

III группа — в эритроцитах обнаруживается агглютиноген В, в плазме—агглютинин а.

IV группа — в эритроцитах содержатся агглютиногены А и В, в плазме агглютининов нет.

Цоликлоны – это моноклинальные антитела, полученные путем генной инженерии из крови стерильных мышей и применяемые для определения группы крови системы АВО. В отличие от стандартных сывороток, цоликлоны отличаются очень высокой активностью и авидностью, то есть временем наступления и выраженностью реакции агглютинации (склеивания). Основными цоликлонами являются: анти-A, анти-B, анти-AB, анти-0 и другие. По ним определяют группы крови и резус-фактор.

Как проводится

Определение группы крови данным методом проводится в лаборатории. Температура воздуха в помещении должна составлять от +15 до + 25 градусов C. Исследование должно проходить при хорошем освещении. Все реагенты нужно хранить плотно закрытыми, поскольку при высыхании активность антител значительно снижается. Нельзя использовать мутные и содержащие хлопья реагенты. Для каждого из них нужна отдельная пипетка. Процедура проводится на планшете или тарелке белого цвета, поверхность которых должна хорошо смачиваться. Благодаря высокой авидности и активности цоликлонов, есть возможность применения по одной серии анти-A и анти-B реагентов.

На планшете делают надписи: анти-A и анти-B. Под соответствующие надписи капают цоликлоны в количестве примерно 0,1 мл. Реагент анти-A имеет желтовато-розовый цвет, анти-B – синий. Рядом с моноклональными антителами капают по капле крови и смешивают ее с реагентами стеклянной палочкой или уголком предметного стекла. Перед смешиванием следующей пары капель палочку или стекло тщательно промывают и вытирают насухо.

На протяжении 2,5 минут ведут наблюдение за агглютинацией, при этом планшет слегка покачивают. Затем оценивают результат. Надо сказать, что для наблюдения за процессом не требуются никакие приспособления. Агглютинаты хорошо видны невооруженным глазом, они быстро сливаются и образуют большие хлопья. Если склеивания не происходит, капля реагента равномерно окрашивается в красный цвет.

1. Если агглютинация отсутствует (и с цоликлоном анти-A, и с анти-B), в эритроцитах нет ни антигена A, ни B. Это I группа.

2. Если агглютинация есть лишь с цоликлоном анти-A, в эритроцитах содержится только антиген A. Это кровь II группы.

3. Если агглютинация наблюдается лишь с цоликлоном анти-B, в красных клетках есть только антиген B. Это III группа.

4. Если агглютинация произошла c цоликлоном и анти-A, и анти-B, в эритроцитах есть оба антигена. Для исключения аутоагглютинации проводят контрольную процедуру: смешивают изотонический раствор натрия хлорида (0,1 мл) и исследуемую кровь (0,01 мл). Если агглютинация отсутствует, то это IV группа.

Определение групп крови стандартными сыворотками
Есть три сектора. Они могут быть в пределах одной тарелки, а могут быть специальными лунками. Секторы подписываются I, II и III, в каждый наносят соответствующую сыворотку.
У пациента выдавливают каплю крови, предварительно протерев палец спиртом. И переносят по капле стеклянной палочки в сектора с сыворотками. Затем перемешивают кровь с сывороткой до розового цвета и засекают время. Реакция проходит в течение пяти минут. Необходимо помнить, что при работе с каждой следующей сывороткой палочка меняется, чтобы не допустить искажения результатов из-за смешения сывороток. По прошествии указанного времени в лунки добавляют изотонический раствор NaCl и перемешивают.

Положительный результат реакции выглядит как красные зёрна, образованные слипшимися эритроцитами, при отрицательном — смесь сохраняет равномерную розовую окраску. Реакция протекает в течение 3-4 минут.

Анализ результатов
Дальнейшее определение групп крови – это элементарная комбинаторика. Если результат в трёх лунках отрицательный, то это группа 0, если прошла реакция только с II и I сыворотками, то группа A, только с I и III – B, а если с обеими – то AB. Все прочие комбинации – являются артефактом и указывают на неверное проведение процедуры анализа.
У ошибок могут быть разные причины. Самые частые это – использование слабых сывороток, у которых закончился срок годности; проведение анализа со слишком большой каплей крови пациента – она должна быть на порядок меньше, чем количество сыворотки, неспецифическая холодовая агглютинация при температуре среды, не соответствующей нормальной и слишком долгое время проведения реакции. Во время подсыхания на периферии смеси образуется зернистость, которая не должна учитываться при оценке группы крови.

Людей с 0 группой крови называют универсальными донорами, так как их кровь можно переливать людям с группами А, В и АВ. В этих случаях соблюдается главное правило переливания — эритроциты донора не агглютинируются плазмой реципиента (лица, которому кровь переливают), а агглютинины, содержащиеся в плазме донора, разводятся кровью реципиента и не достигают концентраций, при которых начнется агглютинация эритроцитов реципиента. Лицам с группой 0 можно переливать только 0 группу.

Люди, имеющие группу АВ — универсальные реципиенты. Им можно переливать кровь группы 0, А, В и АВ. Отсутствие в их плазме агглютининов делает невозможной агглютинацию эритроцитов донора с любой группой крови. В то же время их собственная кровь разводит плазму донора, и любые агглютинины донора не смогут вызвать агглютинацию эритроцитов реципиента.

Значит, лицам с группой крови А можно переливать кровь группы А и 0. Лицам, имеющим кровь группы В, — кровь с группой В и 0.

В настоящее время переливания проводят по правилу «кровь в кровь» те 1 только в 1, 4 только в 4.

Резус-фактор. Резус-фактор (Rh-фактор) открыт Ландштейнером и Винером в 1940 г. с

помощью сыворотки, полученной от кроликов, которым предварительно вводили эритроциты обезьян макак резусов. Полученная сыворотка агглютинировала, кроме эритроцитов обезьян, эритроциты 85% людей и не агглютинировала кровь остальных 15% людей. Идентичность нового фактора эритроцитов человека с эритроцитами макак резусов позволила дать ему название «резус-фактор» (Rh). У 85% людей в крови содержится резус-фактор, такие люди называются резус-положительными (Rh+). У 15% людей резус-фактор в эритроцитах отсутствует [резус-отрицательные (Rh—) люди]. Находится в эритроцитах.

 

Наличие резус-агглютиногена в эритроцитах не связано ни с полом, ни с возрастом. В отличие от агглютиногенов А и В резус-фактор не имеет соответствующих агглютининов в плазме. Перед переливанием крови необходимо выяснить, совместима ли кровь донора и реципиента по резус-фактору. Если кровь резус-положительного донора перелить резус-отрицательному реципиенту, то в организме последнего будут образовываться специфические антитела по отношению к резус-фактору (антирезус-агглютинины). При повторных гемотрансфузиях резус-положительной крови реципиенту у него разовьется тяжелое осложнение, протекающее по типу гемотрансфузионного шока,— резус-конфликт. Резус-конфликт связан с агглютинацией эритроцитов донора антирезус-агглютининами и их разрушением. Резус-отрицательным реципиентам можно переливать только резус-отрицательную кровь. Несовместимость крови по резус-фактору играет также определенную роль в происхождении гемолитических анемий плода и новорожденного (уменьшение количества эритроцитов в крови вследствие гемолиза) и, возможно, гибели плода во время беременности.Если мать принадлежит к резус-отрицательной группе, а отец — к резус-положительной, то плод может быть резус-положительным. При этом в организме матери могут вырабатываться антирезус-агглютинины, которые, проникая через плаценту в кровь плода, будут вызывать агглютинацию эритроцитов с последующим их гемолизом.

19.Пересадка органов и тканей:

Большинство антигенов эритроцитов, вызывающих трансфузионные реакции, широко распространены также в других клетках тела. Кроме того, каждая ткань организма имеет собственный дополнительный набор антигенов. Следовательно, инородные клетки, трансплантированные в любой участок тела реципиента, могут вызывать иммунные реакции. Другими словами, большинство реципиентов способны противостоять внедрению в их организм инородных тканевых клеток так же, как они противостоят внедрению инородных бактерий или эритроцитов. Аутотрансплонтот, изотрансплантат, аллотрансплантат, ксенотрансплантат. Трансплантат ткани или целого органа, пересаженный из одной части тела животного в другую его часть, называют аутотрансплантатом; от одного идентичного близнеца к другому — изотрансплантатом; от одного человека к другому или от любого животного другому животному того же вида — аллотрансплантатом; от животных к человеку или от животного одного вида животному другого вида — ксенотрансплантатом. Трансплантация клеточных тканей. В случаях аутотрансплантатов и изотрансплантатов клетки трансплантата содержат фактически те же типы антигенов, что и ткани реципиента, и обычно живут нормально и неограниченно долго, если обеспечивается их адекватное кровоснабжение. В случае ксенотрансплантатов почти всегда возникают иммунные реакции, вызывающие гибель клеток трансплантата в течение от 1 сут до 5 нед после трансплантации, если не используется некоторая специфическая терапия для предупреждения иммунных реакций. Кожа, почки, сердце, печень, железистые ткани, костный мозг и легкие представляют примеры клеточных тканей или органов, которые пересаживают как аллотрансплантаты (экспериментально или с целью лечения) от одного человека к другому. При соответствующей «совместимости» тканей между людьми многие почечные аллотрансплантаты успешно выживали, по крайней мере, 5-15 лет, аллотрансплантаты печени и сердца — в течение 1-15 лет. В связи с огромной потенциальной важностью пересадки органов и тканей предпринимаются серьезные попытки для предупреждения реакций антиген-антитело, связанных с трансплантацией. Следующие специфические методы используют с определенной степенью клинического или экспериментального успеха. Тканевое типирование (гистотипирование). Комплекс антигенов HLA Наиболее важными антигенами, участвующими в отторжении трансплантата, являются антигены так называемого комплекса HLA. Шесть из этих антигенов присутствуют в мембранах тканевых клеток у каждого человека, но представляют собой выборку примерно из 150 разных антигенов HLA. Следовательно, существуют более триллиона возможных комбинаций. В результате фактически невозможно существование двух людей, имеющих одни и те же шесть антигенов HLA, за исключением однояйцовых близнецов. Развитие выраженного иммунитета против любого одного из этих антигенов может вызвать отторжение трансплантата. Антигены HLA встречаются на белых клетках крови и на тканевых клетках. Следовательно, типирование тканей (гистотипирование) по этим антигенам осуществляется на мембранах лимфоцитов, выделенных из крови человека. Лимфоциты смешиваются с соответствующими иммунными сыворотками (антисыворотками) и комплементом. После инкубации клетки тестируются в отношении повреждения мембран, что обычно определяется по скорости захвата лимфоцитарными клетками особой краски. Некоторые из антигенов HLA имеют слабые антигенные свойства, в связи с чем для приживления аллотрансплантата не всегда необходимо точное соответствие антигенов донора и реципиента. При достижении максимально возможной совместимости между донором и реципиентом метод пересадки становится гораздо менее опасным. Наилучшие результаты по совместимости тканей были между сибсами (родными братьями и сестрами) и между родителями и их детьми. У идентичных близнецов совместимость точная, поэтому трансплантаты от идентичных близнецов почти никогда не отторгаются из-за иммунных реакций.

20.Свертывание крови, роль этого процесса в норме и патологии. Современные представления о механизмах гомеостаза:

Система гемостаза — это биологическая система в организме, функция которой заключается в сохранении жидкого состояния крови, остановке кровотечений при повреждениях стенок сосудов и растворении тромбов, выполнивших свою функцию. Различают три основных механизма остановки кровотечения при повреждении сосудов, которые в зависимости от условий могут функционировать одновременно, с преобладанием одного из механизмов:

1. Сосудисто-тромбоцитарный гемостаз, обусловленный спазмом сосудов и их механической закупоркой агрегатами тромбоцитов. На обнажившихся в результате повреждения стенки сосуда коллагеновых молекулах происходит адгезия (прилипание), активация и агрегация (склеивание между собой) тромбоцитов. При этом образуется так называемый «белый тромб», то есть тромб с преобладанием тромбоцитов.

2. Коагуляционный гемостаз (свертывание крови), запускается тканевым фактором из окружающих повреждённый сосуд тканей, и регулируемый многочисленными факторами свертывания крови. Он обеспечивает плотную закупорку повреждённого участка сосуда фибриновым сгустком — это так называемый «красный тромб», так как образовавшаяся фибриновая сетка включает в себя клетки крови эритроциты. Раньше сосудисто-тромбоцитарный гемостаз называли первичным, коагуляционный вторичным, так как считалось, что эти механизмы последовательно сменяются, в настоящее время доказано, что они могут протекать независимо друг от друга.

3. Фибринолиз — растворение тромба после репарации (ремонта) повреждённой стенки сосуда.

Конечным итогом работы свертывающей системы крови является превращение фибриногена в волокна фибрина под действием тромбина. Установлено, что любой сгусток, который образуется в сосудах, в том числе в артериях, является тромбоцитарно-фибриновым. Тромбоциты играют важную роль в восстановлении стенок сосуда: из тромбоцитов, участвующих в образовании сгустка, выделяется большое количество активных веществ. В числе прочих выделяется фактор роста тромбоцитов (англ. Platelet-derived growth factor, PDGF) — сильный стимулятор восстановления тканей. Завершающий этап работы системы гемостаза — фибринолиз. Система фибринолиза разрушает фибриновый сгусток по мере того, как повреждённый сосуд восстанавливается, и необходимость в наличии сгустка пропадает.

Свёртывание крови — это важнейший этап работы системы гемостаза, отвечающий за остановку кровотечения при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой весьма сложным образом различных факторов свёртывания крови образует систему свёртывания крови.

Свёртыванию крови предшествует стадия первичного сосудисто-тромбоцитарного гемостаза. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и механической закупоркой агрегатами тромбоцитов места повреждения сосудистой стенки. Характерное время для первичного гемостаза у здорового человека составляет 1—3 минуты. Собственно свёртыванием крови (гемокоагуляция, коагуляция, плазменный гемостаз, вторичный гемостаз) называют сложный биологический процесс образования в крови нитей белка фибрина, который полимеризуется и образует тромбы, в результате чего кровь теряет текучесть, приобретая творожистую консистенцию. Свёртывание крови у здорового человека происходит локально, в месте образования первичной тромбоцитарной пробки. Характерное время образования фибринового сгустка — около 10 минут. Свёртывание крови — ферментативный процесс.

Основоположником современной физиологической теории свёртывания крови является Александр Шмидт. В научных исследованиях XXI века, проведённых на базе Гематологического научного центра под руководством Атауллаханова Ф. И., было убедительно показано[1][2], что свёртывание крови представляет собой типичный автоволновой процесс, в котором существенная роль принадлежит эффектам бифуркационной памяти.

Процесс гемостаза сводится к образованию тромбоцитарно-фибринового сгустка. Условно его разделяют на три стадии[3]:

  1. временный (первичный) спазм сосудов;
  2. образование тромбоцитарной пробки за счёт адгезии и агрегации тромбоцитов;
  3. ретракция (сокращение и уплотнение) тромбоцитарной пробки.

Повреждение сосудов сопровождается немедленной активацией тромбоцитов. Адгезия (прилипание) тромбоцитов к волокнам соединительной ткани по краям раны обусловлена гликопротеином фактором Виллебранда[4]. Одновременно с адгезией наступает агрегация тромбоцитов: активированные тромбоциты присоединяются к повреждённым тканям и к друг другу, формируя агрегаты, преграждающие путь потере крови. Появляется тромбоцитарная пробка[3].

Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются различные биологически активные вещества (АДФ, адреналин, норадреналин и другие), которые приводят к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина[3], который воздействует на фибриноген с образованием сети фибрина, в которой застревают отдельные эритроциты и лейкоциты – образуется так называемый тромбоцитарно-фибриновый сгусток (тромбоцитарная пробка). Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, наступает её ретракция[3].

Процесс свёртывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, приобретают способность активировать другие факторы свёртывания крови[3]. В самом простом виде процесс свёртывания крови может быть разделён на три фазы:

  1. фаза активации включает комплекс последовательных реакций, приводящих к образованию протромбиназы и переходу протромбина в тромбин;
  2. фаза коагуляции — образование фибрина из фибриногена;
  3. фаза ретракции — образование плотного фибринового сгустка.

Данная схема была описана ещё в 1905 году[5] Моравицем и до сих пор не утратила своей актуальности[6].

В области детального понимания процесса свёртывания крови с 1905 года произошёл значительный прогресс. Открыты десятки новых белков и реакций, участвующих в процессе свёртывания крови, который имеет каскадный характер. Сложность этой системы обусловлена необходимостью регуляции данного процесса.

Современное представление с позиций физиологии каскада реакций, сопровождающих свёртывание крови, представлено на рис. 2 и 3. Вследствие разрушения тканевых клеток и активации тромбоцитов высвобождаются белки фосфолипопротеины, которые вместе с факторами плазмы Xa и Va, а также ионами Ca2+ образуют ферментный комплекс, который активирует протромбин. Если процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, речь идёт о внешней системе свёртывания крови (внешний путь активации свёртывания, или путь тканевого фактора). Основными компонентами этого пути являются 2 белка: фактор VIIа и тканевый фактор, комплекс этих 2 белков называют также комплексом внешней теназы.

Если же инициация происходит под влиянием факторов свёртывания, присутствующих в плазме, используют термин внутренняя система свёртывания. Комплекс факторов IXа и VIIIa, формирующийся на поверхности активированных тромбоцитов, называют внутренней теназой. Таким образом, фактор X может активироваться как комплексом VIIa—TF (внешняя теназа), так и комплексом IXa—VIIIa (внутренняя теназа). Внешняя и внутренняя системы свёртывания крови дополняют друг друга[5].

В процессе адгезии форма тромбоцитов меняется — они становятся округлыми клетками с шиповидными отростками. Под влиянием АДФ (частично выделяется из повреждённых клеток) и адреналина способность тромбоцитов к агрегации повышается. При этом из них выделяются серотонин, катехоламины и ряд других веществ. Под их влиянием происходит сужение просвета повреждённых сосудов, возникает функциональная ишемия. В конечном итоге сосуды перекрываются массой тромбоцитов, прилипших к краям коллагеновых волокон по краям раны[5].

На этой стадии гемостаза под действием тканевого тромбопластина образуется тромбин. Именно он инициирует необратимую агрегацию тромбоцитов. Реагируя со специфическими рецепторами в мембране тромбоцитов, тромбин вызывает фосфорилирование внутриклеточных белков и высвобождение ионов Ca2+.

При наличии в крови ионов кальция под действием тромбина происходит полимеризация растворимого фибриногена (см. фибрин) и образование бесструктурной сети волокон нерастворимого фибрина. Начиная с этого момента в этих нитях начинают фильтроваться форменные элементы крови, создавая дополнительную жёсткость всей системе, и через некоторое время образуя тромбоцитарно-фибриновый сгусток (физиологический тромб), который закупоривает место разрыва, с одной стороны, предотвращая потерю крови, а с другой — блокируя поступление в кровь внешних веществ и микроорганизмов. На свёртывание крови влияет множество условий. Например, катионы ускоряют процесс, а анионы — замедляют. Кроме того, существуют вещества как полностью блокирующие свёртывание крови (гепарин, гирудин и другие), так и активирующие его (яд гюрзы, феракрил).

Врождённые нарушения системы свёртывания крови называют гемофилией.

21. Плазменные факторы свертывания крови:

Факторы свёртывания крови — группа веществ, содержащихся в плазме крови и тромбоцитах и обеспечивающих свёртывание крови. Большинство факторов свёртывания — белки. К факторам свёртывания относятся также ионы кальция и некоторые низкомолекулярные органические вещества (см. данную статью). В норме белковые факторы свёртывания крови находятся в плазме в неактивном состоянии. Если фактор активируется, то к его обозначению добавляют букву «а». Международный комитет по гемостазу и тромбозу присвоил арабскую нумерацию тромбоцитарным и римскую — плазменным факторам. Всего выделяют 13 плазменных факторов и 22 тромбоцитарных.

Факторы свёртывания содержатся также в других форменных элементах крови (эритроцитах и лейкоцитах), эндотелии сосудов и других тканях. Их иногда выделяют в качестве самостоятельных групп (лейкоцитарные, эритроцитарные, тканевые факторы свёртывания).

I. Фибриноген

II. Протромбин



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: