Сравнение результатов хроматографической идентификации сложных смесей органических соединений




И.И.Медведовcкая, С.В.Тихомирова, Т.Д.Красавина, Л.Н.Губкина, Омский государственный университет, кафедра химии нефти и аналитической химии

Качественный анализ хроматографии базируется в первую очередь на закономерностях удерживания. Для точной идентификации могут использоваться как чисто хроматографические приемы (сравнение параметров удерживания, получение корреляционных зависимостей типа параметр удерживания - физико-химические характеристики, использование селективных декторов и др.), так и варианты, сочетающие газовую хроматографию с другими физико-химическими методами. Особую надежность обеспечивает сочетание хроматографии с масс-спектрометрией [1]. Однако для большинства обычных аналитических лабораторий как у нас в стране, так и за рубежом, предназначенных для массового пользователя, последний подход остается достаточно сложным и дорогим, а потому не реализуемым. В настоящей работе идентифицировали продукты алкилирования фенола бутиленом с использованием чисто хроматографических приемов, а также различных алкилбензолов с применением хромато-масс-спектрометрии. На рис. 1 и 2 приведены хроматограммы алкилфенолов и алкилбензолов. Хроматографическую идентификацию проводили тремя методами: 1) По индексам Ковача определяли при работе в режиме программирования температуры по следующей формуле:

  (1)

 

Рис.1. Хроматограмма разделения алкилфенолов (капиллярная колонка 50 м, НЖФ-SE-101, программированный нагрев 50-320 С, 7 /мин): 1 - фенол; 2 - 2,6-диэтилфенол; 3 - 2-трет-бутил-4-метилфенол; 4 - 2,6-дитрет-бутилфенол; 5 - 4-трет-бутилфенол; 6 - 2-метил-4-пропилфенол; 7 - 4-втор-бутилфенол; 8 - 2,5-диэтилфенол; 9 - 4-изобутилфенол; 10 - 2,3,5,6-тетраметилфенол; 11 - 4-бутилфенол; 12 - 3-бутилфенол; 13 - 2-этил-4,5-диметилфенол; 14 - 3,4-диэтилфенол; 15 - 2-этил-5-пропилфенол; 16 - 2,4-дитрет-бутилфенол; 17 - 2,4,6-тритрет-бутилфенол

Результаты идентификации продуктов алкилирования фенола изобутилленами на SE-30 (Ik, Tкип и др.) хроматографическими методами

N пиков Наименование компонентов Ik T кипения, лит. данные
экспер. расчет.
  Фенол   182.0 182.0
  2,6-диэтилфенол   201.0 200.6
  2-третбутил-4-метилфенол   233.2  
  2,6-дитретбутилфенол   235.2  
  4-третбутилфенол   239.8 237.0
  2-метил-4н.пропилфенол   241.2 241.3
  4-вторбутилфенол   241.6 242.1
  2,5-диэтилфенол   242.7 242.5
  4-изобутилфенол   244.4 243.9
  2,3,5,6-тетрометилфенол   246.0 248.0
  4-н.бутилфенол   248.1 248.0
  3-н.бутилфенол   249.1 250.5
  2-этил-4,5-диметилфенол   250.2 251.2
  3,4-диэтилфенол   252.2 252.5
  2-этил-5н.пропилфенол   255.4 257.6
  2,4-дитретбутилфенол   265.0 266.0
  2,4,6-третбутилфенол   276.0 277.0

Результаты идентификации алкилбензолов (технического диизопропилбензола) хроматографическими и хромато-масс-спектрометрическими методами

N Наименование компонента Ik Т кипения Коэффицеент совпадения (ХМС)
сквалан SE-52 Расчет. Лит. Прямой Обратный
  1,3 - диэтилбензол     181.2 181.1    
  1,4 - диэтилбензол     183.8 183.8    
  1-этил-3-изопропилбензол     190.0 190.0    
  1-этил-2-изопропилбензол     193.2 193.0    
  1-этил-4-изопропилбензол     198.0 197.0    
  1,3-диизопропилбензол     202.2 203.0    
  1,2-диизопропилбензол     204.0 203.8    
  1,1,3-триметилиндан     208.0 206.8    
  1,4-диизопропилбензол     210.0 210.0    
  1,3,5-триизопропилбензол -   213.8 213.5    
  1,2,4-триизопропилбензол -   216.0 216.0    
  1,1-диметил-5-третбутилиндан - - - -    

 

где Ti, Tz, Tz+1-температуры выхода пиков i-компонента и нормальных парафиновых углеводородов, содержащих z и z+1 атомов углерода в молекуле; 2) По зависимости индексов Ковача от температуры, которая в пределах одного гомологического ряда хорошо описывается линейным соотношением:

  ln I(k) = a+bTкип, (2)

где a и b-константы, зависящие от гомологического ряда, характеристик сорбента и температуры колонки: Ткип-температура кипения компонента; 3) В тех случаях, когда отсутствовали справочные данные по температурам кипения некоторых соединений, их устанавливали по зависимости индексов удерживания соединений от температурного инкримента по формуле:

  dI = 5dТкип, (3)

где dI - разность между индексами определяемого неизвестного и известного соединий, а dTкип-разность их температур кипения. Совпадение расчетных значений температур кипения компонентов со справочными данными является убедительным доказательством правильности идентификации [1,2].

Задача идентификации компонентного состава хроматографическими методами легче решается в тех случаях, когда в распоряжении исследователей есть много тесторных соединений и табличные значения их физико-химических характеристик или параметров удерживания. К сожалению, мы располагали всего несколькими тесторами: фенолом, орто-, мета- и паракрезолом (для алкилфенолов) и 1,4 - диэтилбензолом, 1-этил-3-изопропилбензолом, 1,4-диизопропилбензолом.

В табл.1 и 2 приведены полученные нами результаты определения компонентного состава значений индексов Ковача, многие из которых отсутствуют в банках данных, и температуры кипения. Состав алкилфенолов определяли только хроматографическими методами, а алкилбензолов - хроматографическими и хромато-масс-спектрометрическими.

Table 1: Хроматограмма разделения алкилбензолов (капиллярная колонка 30 м, НЖФ-OV-101, программированный нагрев 100-350 '27 С, 6'27/мин): 1 - 1,3-диэтилбензол; 2 - 1,4-диэтилбензол; 3 - 1-этил-3-изопропилбензол; 4 - 1-этил-2-изопропилбензол; 5 - 1-этил-4-изопропилбензол; 6 - 1,3-диизопропилбензол; 7 - 1,2-диизопропилбензол, 8 - 1,1,3-триметилиндан; 9 - 1,4-диизопропилбензол; 10 - 1,3,5-триизопропилбензол; 11 - 1,2,4-триизопропилбензол; 12 - 1,1-диметил-5-трет-бутилиндан

Для обработки результатов идентификации алкилбензолов (прибор МД-800) использовали программу Masslab версия 12 и библиотеку масс-спектров NIST Library в редакции 1992 г. Сравнение полученных масс-спектров с данными, имеющимися в библиотеке, приводили к комбинированным прямым-обратным поискам, что повысило точность идентификации. При сравнении полученного масс-спектра каждого компонента со справочными данными рассчитывали коэффициент совпадения (см. табл. 2).

Сравнение результатов качественного хроматографического анализа на основе индексов удерживания по трем основным методам - логарифмическим значениям Ik на различных НЖФ, графической зависимости Ik от температуры кипения компонентов на различных НЖФ и температурному инкрименту разделяемых соединений с ХМС - позволило доказать, что такое сочетание методов ГЖХ - идентификации позволяет получить достоверную информацию о составе сложных объектов даже при наличии минимального количества стандартов и их можно рекомендовать для широкого применения в аналитической практике.

Список литературы

Сакодынский К.И., Бражников В.В. и др. Аналитическая хроматография. M.: Химия, 1993. С.214-225.

Куликов В.И., Сорокин М.Е. ЖАХ. 1975. Т.30. N 8.

Набивач М.В. Кокс и химия. 1994. N 7. С.16-21.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: