Повышение параметров пара и единичной мощности агрегатов, а также введение промежуточных перегревов пара обусловили применение турбин с большим числом цилиндров. Увеличение расхода пара, с одной стороны, повышает экономичность первых ступеней турбины вследствие увеличения высот лопаток в цилиндре высокого давления (ЦВД), а с другой стороны, усложняет проектирование последних ступеней. Стремление повысить термический КПД цикла приводит к уменьшению абсолютного давления в конденсаторе до 0,03 – 0,035 бар, что в значительной мере увеличивает объемный расход пара последней ступенью. Для получения минимальных потерь с выходной кинетической энергией необходима, возможно, большая ометаемая лопатками площадь. Требуемая ее величина достигается, во-первых, увеличением длины лопатки и диаметра последней ступени, во-вторых, увеличением числа параллельных потоков пара в части низкого давления (ЧНД). С этой целью возможно также применение двухъярусных лопаток.
Максимальная длина лопатки во многом определяется соображениями прочности. Вместе с тем проблема создания длинных лопаток не только прочностная, но и аэродинамическая. С увеличением относительной длины лопаток растет опасность отрыва потока в корневой области. Это серьезное препятствие на пути дальнейшего увеличения относительной длины лопаток. Современные методы проектирования позволяют избежать отрывов потока на расчетных режимах. При частичных же нагрузках в таких ступенях имеют место отрывы потока, охватывающие широкую область в корневой части колеса. Эти явления снижают экономичность последних ступеней, а также оказывают неблагоприятное влияние на вибрационную прочность колеса.
|
Число выходов пара для очень мощных агрегатов уже сейчас достигает восьми. С получением максимальной площади выхода связан вопрос о выборе числа валов агрегата. Одновальный агрегат проще и обычно дешевле двухвального. В то же время двухвальный агрегат позволяет применить разную скорость вращения обоих валов. Уменьшение скорости вращения ЧНД позволяет увеличить входную площадь последней ступени при том же уровне допускаемых напряжений и уменьшить потери с выходной скоростью.
Двухвальные агрегаты получили широкое распространение за рубежом. Это относится не только к очень мощным установкам обычного типа, но также к атомным агрегатам, работающим при сравнительно низких параметрах пара и имеющих огромные объемные расходы в последних ступенях турбин. Кроме того, в ряде стран (США, страны Латинской Америки и др.) применяется частота критического тока 60 Гц, что значительно усложняет задачу создания длинных лопаток при высокой скорости вращения (3600 об/мин).
В вопросе о том, какому из вариантов (одновальному или двухвальному) отдать предпочтение, нет единого мнения. В конце 50-х годов ведущие специалисты зарубежных фирм «Броун-Бовери», «Дженерал Электрик» и «Сименс» считали максимальной экономически выгодной мощностью одновального агрегата 400–500 МВт. Последнее десятилетие заметно изменило тенденцию большинства заводов и фирм в этом вопросе. Отечественные и зарубежные заводы и фирмы проектируют и изготовляют одновальные турбины, мощности которых значительно превышают величины, еще несколько лет назад считавшиеся «предельными». (В настоящее время изготавливаются и проектируются турбины мощностью 800 и 1200 МВт – ЛМЗ, 765 МВт – «Дженерал Электрик», 800 – 1000 МВт – «Сименс», 600 МВт – фирмы Англии, Франции, Италии и др.). Западногерманская фирма «Сименс» на основании технико-экономических расчетов в настоящее время считает неперспективным выпуск двухвальных агрегатов до 1000 МВт. В то же время американскими и западноевропейскими фирмами выпускается большое количество двухвальных агрегатов. Наиболее мощные агрегаты (800 – 1300 МВт) за рубежом в настоящее время изготовляются двухвальными. В СССР выпускались одновальные турбины мощностью до 800 МВт. В настоящее время ЛМЗ и ХТГЗ изготовляют более мощные одновальные машины.
|
С повышением начальных параметров пара и единичной мощности агрегатов вновь актуальным стал вопрос о выборе типа парораспределения паровых турбин. Эта задача не может решаться в отрыве от вопроса о предполагаемых режимах работы турбины. Дроссельное парораспределение позволяет обеспечить наибольшую экономичность при расчетном режиме. Как показали расчеты, выполненные в ЛПИ совместно с ЛМЗ применение дроссельного парораспределения для турбины К-200–130 вместо соплового с заменой регулировочной ступени тремя ступенями давления снижает удельный расход тепла по машинному залу электростанции при номинальном режиме примерно на 0,3%, а для турбины К-300–240 – на 0,4%. Такое повышение экономичности равносильно увеличению КПД регулировочной ступени примерно на 2%.
Сопловое парораспределение, уступая дроссельному при номинальном режиме, превосходит его в экономичности при частичных нагрузках (в рассмотренных примерах – при нагрузках, меньших 90% от номинальной). Один из существенных недостатков соплового парораспределения при высоких параметрах пара заключается в том, что вследствие различного дросселирования пара в регулировочных клапанах при их неодинаковом открытии температуры потоков пара, идущих через эти клапаны, могут значительно различаться. Так, например, при начальных параметрах 400 бар, 650° С температура пара за клапаном, открытым на 10%, оказывается на 180 °С ниже температуры пара за полностью открытыми клапанами.
|
Такая неоднородность потока и связанный с нею неравномерный нагрев статора турбины могут быть причиной значительных температурных напряжений и короблений корпуса. Для устранения неравномерности параметров пара перед различными группами сопел применяется одновременный впуск пара в несколько групп сопел; при этом сопловое парораспределение приближается к дроссельному, и разница в экономичности частичных режимов между ними уменьшается.
В то же время мощности регулировочных ступеней крупнейших паровых турбин достигли необычайной величины. Например, в турбине ЛМЗ К-800–240 ее мощность составляет около 50000 кВт. Проектирование рабочих лопаток такой ступени для условий нестационарного потока становится крайне затруднительным. По этим причинам для блоков мощностью 1000 МВт и выше предпочтение отдается дроссельному парораспределению.
Существенное преимущество дроссельного парораспределения с полным подводом пара – улучшение вибрационных характеристик лопаток первой ступени. Дроссельное парораспределение с полным подводом пара начинает все шире применяться для мощных паровых турбин. С таким парораспределением выполнены турбины мощностью 1000 и 1150 МВт в США. Дроссельное парораспределение имеет турбина мощностью 1300 МВт, проектируемая швейцарской фирмой «Броун-Бовери» для США. В новых проектах турбин мощностью 1200–1600 МВт ЛМЗ также предусматривается дроссельное парораспределение.