Нейрон с помощью ПД может передавать информацию на другие клетки, но один нейрон сам по себе не может выполнить функции, характерные для ЦНС. Для этих целей необходимо объединение различных нейронов в единые ансамбли. Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, выполняющие одну и ту же функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.
Скопления нейронов и нейроглии образуют серое вещество мозга. Серое вещество ЦНС неоднородно. В нем имеются участки концентрации нейронов, где их тела очень плотно располагаются относительно друг друга, а также области, где концентрация нейронов невысокая. Области высокой концентрации нейронов получили название ядер серого вещества. Специфические по функции нейроны образуют самостоятельные соответствующие ядра, расположенные среди белого вещества в различных отделах ствола головного мозга. Понятие ядра в отношении коры большого мозга скорее носит функциональный смысл, чем морфологический.
Нервный центр - это комплекс нейронов, сосредоточенных в одной структуре ЦНС (например, дыхательный центр продолговатого мозга), которые выполняют близкие функции. Понятие «нервный центр» базируется главным образом на анатомических принципах.
Нейронные цепи - это соответствующим образом (последовательно) соединенные между собой нейроны, которые выполняют определенную задачу. Рефлекторная дуга является частным случаем организации нейронов по типу нейронных цепей.
Нейронные сети - это объединение нейронов, которое содержит множество параллельно расположенных и связанных между собой последовательных цепей нейронов. Такие объединения выполняют сложные задачи. Например, сенсорные сети выполняют задачу по обработке сенсорной информации. Объединенные в нейронные сети нейроны могут приобретать новые свойства, отсутствующие в отдельности. Поэтому элементарная нейронная сеть считается важной единицей функциональной активности ЦНС. Принцип кооперативного поведения нейронов в сети предполагает, что совокупность взаимосвязанных элементов обладает большими возможностями функциональных перестроек.
|
Более сложное объединение нейронов, характерное для коры головного мозга, - это нейронные колонки и модули. Каждая колонка представляет собой вертикальный цилиндр диаметром около 100 - 150 мкм, включающий нейроны всех слоев коры. Это нейронное объединение - локальная нервная сеть, которая, перерабатывая информацию, передает ее с входа на выход. Структурной основой вертикальной корковой колонки являются вертикально ориентированные пучки апикальных дендритов, берущих начало от крупных и средних пирамидных нейронов. Расстояние между отдельными пучками дендритов соответствует расстоянию между группами клеток, образующих колонки. Функционально колонка представляет собой объединение вертикально связанных пирамидных и звездчатых клеток разных слоев, аксоны которых также ветвятся в вертикальном направлении. Звездчатые клетки являются возбуждающими и тормозными интернейронами такого объединения, имеющего свои афферентные входы, внутрикорковые межнейронные связи и эфферентные выходы по аксонам пирамидных клеток. Макроколонка, или функциональный корковый модуль, является объединением нескольких вертикальных колонок, его диаметр в несколько раз превышает диаметр вертикальной колонки и составляет 300 - 600 мкм. В отличие от вертикальных колонок модули имеют несколько входов и выходов и обеспечивают более сложную переработку информации, а также участвуют в механизмах формирования высших психических функций.
|
Строение и функции нейроглии
Нейроглия - это обширная разнородная группа клеток (глиоцитов, или глиальных клеток) нервной ткани, обеспечивающая деятельность нейронов и выполняющая опорную, трофичекую, разграничительную, барьерную, секреторную и защитную (иммунологическую) функции. Глиальные клетки по размерам в 3 - 4 раза меньше, чем нейроны. В мозге человека содержание глиоцитов в 5 - 10 раз превышает число нейронов, причем все глиоциты занимают около половины объема мозга. В отличие от нейронов глиоциты взрослого человека способны к делению. Нейроглия включает макроглию и микроглию. В белом и сером веществе мозга рассеяны клетки микроглии, которые образуются из моноцитов крови. Они захватывают и разрушают обломки разрушающихся клеток.
Макроглия в эмбриональном периоде подобно нейронам развивается из эктодермы. Она подразделяется на астроцитарную, ологодендроцитарную и эпендимоцитарную глию. Астроциты (или звездчатые глиальные клетоки) - это самые крупные формы глиоцитов, котрые встречаются во всех отделах ЦНС. Астроциты участвуют в создании гематоэнцефалического барьера (ГЭБ), функция которого состоит в защите мозга от проникновения всех крупных молекул, большинства продуктов патологических процессов и многих лекарств. Олигодендроциты (в периферической нервной системе носят название шванновские) имеют маленькое тело и относительно небольшие, как бы расплющенные отростки. Эти отростки многократно обертывают аксоны нейронов, обеспечивая им изолирующий миелиновый футляр. Миелин - это жироподобное вещество, которое выполняет роль электроизолятора. При утрате миелиновой оболочки вследствие, например, демиелинизирующих заболеваний, передача сигналов из одной части мозга в другую серьезно нарушается, что обычно приводит к инвалидности.
|
Процесс миелинизации имеет очень большое значение в развитии мозга. Известно, что у новорожденного ребенка миелинизировано примерно 2/3 волокон головного мозга. Примерно к 12 годам завершается следующий этап миелинизации. Это соответствует тому, что у ребенка уже формируется функция внимания, он достаточно хорошо владеет собой. Вместе с тем полностью процесс миелинизации заканчивается только при завершении полового созревания. Таким образом, процесс миелинизации является показателем созревания ряда психических функций. В то же время известны заболевания нервной системы человека, которые связаны с демиелинизацией нервных волокон, что сопровождается тяжелыми страданиями.
Миелинизированные волокна в сотни раз быстрее проводят возбуждение, чем немиелинизированные, т. е. нейронные сети нашего мозга могут работать с большей скоростью, а значит, более эффективно. Поэтому не миелинизируются в нашем организме только самые тонкие волокна (менее 1 мкм в диаметре), которые проводят возбуждение к медленно работающим органам - кишечнику, мочевому пузырю и др. Как правило, не миелинизируются волокна, проводящие информацию о боли и температуре.