Применяется в мультипликативных моделях и смешанных моделях типа
.
При его использовании величина влияния факторов на изменение результативного показателя рассчитывается умножением абсолютного прироста исследуемого фактора на плановую (базовую) величину факторов, которые находятся в модели справа от него, и на фактическую величину факторов, расположенных слева от него.
Рассмотрим алгоритмы расчета:
для мультипликативной факторной модели типа: 
;
;
;
;
;
для смешанной модели типа
.
;
;
;
.
Способ относительных разниц
Применяется в мультипликативных моделях. Есть несколько вариантов расчета влияния факторов на изменение результативного показателя.
Первый способ: используются относительные отклонения факторных показателей, выраженные в процентах.
Исходная модель: 
;
;
;
Тогда
;
;
;
.
Второй и третий способы: используются коэффициенты и индексы изменения факторных показателей.
;
;
.
Тогда
;
;
;
.
Для третьего способа можно использовать еще и такой метод расчета влияния факторов на результативный показатель
;
;
.
Способ четыре: прием процентных разностей.
Исходная модель 
|
|
|
|
где
;
;
;
- процент выполнения плана соответственно по факторам “a”, “
”, “
” и по результативному показателю.
Способ пропорционального деления или долевого участия
Сущность способа пропорционального деления состоит в пропорциональном делении прироста результативного показателя по факторам его обусловившим, а долевого участия — в определении доли участия каждого фактора в общем приросте результативного показателя.
Эти способы применяются для аддитивных, мультипликативных, кратных и смешанных моделей типа
.
Для определения влияния отдельных факторов на прирост результативного показателя рассчитывается один из следующих коэффициентов:
1) коэффициент пропорционального деления
, как отношение общего относительного прироста результативного показателя
к сумме относительных изменений факторных показателей.
При аддитивных типах моделей рассчитывается один коэффициент пропорциональности, а при других типах моделей — он определяется для каждого порядка факторов в отдельности.
При исходной модели
, 
(изменения всех составляющих взяты в относительных единицах).
;
;
;
.
2) коэффициент долевого участия
, который определяется как отношение относительного прироста i‑го факторного показателя к сумме относительных изменений факторных показателей.
Например, для исходной факторной модели
, коэффициент долевого участия для фактора «а»:
.
Тогда для приведенной исходной мультипликативной модели:
;
;
;
.
Переход от относительных единиц к абсолютным осуществляется по формулам:
;
.
Если взаимосвязь факторов двух уровневая (n-уровневая), то необходимо рассчитывать коэффициент пропорционального деления для каждого уровня, а коэффициент долевого участия для каждого факторного показателя соответствующего уровня.
Интегральный способ
Для приемов элиминирования характерны следующие недостатки:
величина влияния фактора на изменение результативного показателя зависит от места расположения фактора в детерминированной модели;
дополнительный прирост результативного показателя, полученный от совместного взаимодействия факторов, присоединяется к последнему фактору.
Интегральный метод не имеет этих недостатков. Величина влияния фактора на изменение результативного показателя не зависит от места расположения фактора в детерминированной модели. Дополнительный прирост от совместного взаимодействия факторов, распределяется между ними поровну.
Метод применяется для измерения влияния факторов в мультипликативных, кратных и смешанных моделях типа
.
Для мультипликативных моделей:
Исходная модель
.
;
.
Исходная модель 
;
;
.
Исходная модель 

Кратная модель
;
;
.
Смешанная модель типа:
;
;
;
| ;
|
;
| ;
|
;
| .
|
Способ логарифмирования
Применяется для измерения влияния факторов в мультипликативных моделях.
Результат расчета влияния факторов на результативный показатель при этом способе не зависит от места расположения факторов в модели. Дополнительный прирост от совместного взаимодействия факторов распределяется между ними пропорционально доли изолированного влияния каждого фактора на уровень результативного показателя.
Исходная модель 
;
;
.
ЛИТЕРАТУРА
1. Экономика предприятия (фирмы): Учебник / Под. ред. проф. О.И.Волкова. – М.: ИНФРА-М, 2005. – 601 с.
2. Грузинов В.П., Грибов В.Д. Экономика предприятия: Учеб. пособие – М.: Финансы и статистика, 2005. – 208 с.
3. Сергеев И.В. Экономика предприятия. Учеб. пособие. – М.: Финансы и статистика, 2005. – 304 с.
4. Экономика предприятия / Под ред. Е.Л.Кантора. – СПб.: Питер, 2006. – 352 с.
;
;
;
;
;
.