Формула полной вероятности.




Текст занятия

ассистента кафедры МММЭ Синицкой Е.В.

Дисциплина «Математика для экономистов »

Тема: «Теоремы сложения и умножения вероятностей. Формула полной вероятности »

План.

Сложения вероятностей.

2. Умножения вероятностей.

3. Формула полной вероятности.

4. Формула Байеса.

5. Примеры, рекомендуемые для домашнего задания.

6. Список использованной литературы.

Рассмотрим, каким образом применять на практике математический аппарат теории вероятностей для оценки вероятности наступления интересующего нас случайного события, которое, в свою очередь, является некоторой комбинацией других случайных событий.

Классическое определение вероятности Р(А) события А как отношения числа благоприятных элементарных исходов m к числу всех элементарных исходов n предполагает, что все элементарные исходы равновероятны. Однако, это условие далеко не всегда выполняется, поэтому мы сейчас введем еще одно определение вероятности - статистическое (или частотное).

Как оценить вероятность интересующего нас события, если в процессе испытания элементарные исходы вовсе не обязаны быть равновероятными? Строго говоря, необходимо было бы много раз проделать интересующий нас опыт и узнать частоту реализации различных элементарных исходов. В пределе, при увеличении числа испытаний, отношение числа m реализованных событий А к общему количеству испытаний n и будет определять вероятность Р(А)=m/n. Важно понимать, что статистический подход не противоречит классическому, а лишь расширяет границы возможного применения аппарата теории вероятностей. Поэтому все приемы, которые были освоены в рамках классической схемы, можно будет использовать и в дальнейшем. Для решения практических задач нам понадобятся следующие важные теоремы.

Сложение вероятностей.

Теорема1. Сложения вероятностей для несовместных событий:

P(A+B)=P(A)+P(B)

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.

Обсуждение.

Напомним, что события А и В называются несовместными, если в результате опыта они не могут появиться вместе. Пожалуйста, не путайте их с независимыми событиями. Независимые события могут спокойно сосуществовать друг с другом.

Пример1. По статистике, в прошлом году 10% жителей нашего города встретили Новый год в отъезде, 40% ходили в гости или в ресторан, оставаясь в городе, остальные встречали Новый год дома. Считая, что эта тенденция сохранится, посчитайте вероятность того, что житель нашего города встретит Новый год дома.

Решение: здесь можно смело пользоваться теоремой сложения вероятностей, т.к. события встречи Нового года в разных местах одним и тем же человеком- несовместны. Поэтому все, кто встретит Новый год в гостях или в другом городе (они составят вместе 40%+10%), не смогут встретить его дома. Принимая общее число жителей города за 100%, найдем, что 50% оставалось дома в прошлый раз. Полагая, что эти же пропорции сохранятся и в этом году, найдем, что вероятность встретить Новый год дома для жителя нашего города равна Р=0,5. (Заметим, что в данном случае нам было удобно посчитать сначала вероятность обратного события, а потом вычесть результат из 100%.)

Что произойдет, с нашими оценками, если исходные события не являются несовместными? Давайте немного изменим предыдущий пример.

Пример2. Владелец фирмы частных такси хочет сделать прогноз количества клиентов на новогоднюю ночь. Пусть, по его сведениям, в прошлом году Новый год встретили дома 50%, в компании друзей или родственников, но не выезжая из города - 80%, в отъезде были 10%. Почему у него получилось в сумме больше 100%?

Видимо, каких-то жителей он посчитал больше одного раза. Скорее всего, тех, кто сидел дома, но, одновременно, принимал друзей или родственников, которые пришли к нему в гости. Поскольку эти события не являются несовместными, просто складывая вероятности, он завышает свои оценки.

Впрочем, это относится не только к оценке вероятности события, но и к решению любых задач на подсчет элементов объединения двух множеств путем сложения. Если множества частично перекрываются, сумма их элементов будет больше, чем реальное количество элементов, поскольку при арифметическом сложении элементы этого "перекрытия" мы невольно посчитали дважды, и как входящие в первое множество, и как входящие во второе. Выход здесь один: мы должны заметить, что множества частично "перекрываются", посчитать число элементов в их общей части и вычесть это число из суммы (т.к. при суммировании мы его посчитали дважды).

Теорема2. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.

Следствие Сумма вероятностей противоположных событий равна единице.

Событие А называется независимым от события В, если вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Определение. Вероятность события В, вычисленная при условии, что имело место событие А, называется условной вероятностью события В.

2. Умножения вероятностей.

Теорема3. Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

Если события независимые, то

и теорема умножения вероятностей принимает вид:

В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

Пример3. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.

Решение: Обозначим появление хотя бы одной бубновой карты –событие А, появление хотя бы одной червонной карты – событие В. Таким образом нам надо определить вероятность события С=А+В. Отметим, что события А и В- совместны, т.е. появление одного из них не исключает появления другого.

Всего в колоде 13 червонных и 13 бубновых карт. При вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты- , третьей - , четвертой - .

Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна

.

Пример4. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?

Решение: Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков, равна

.

Тогда вероятность того, что хотя бы один раз выпадет 6 очков, составит .

Пример5. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности хотя бы одного выстрела, двух выстрелов, двух осечек.

Вероятность выстрела при первом нажатии на курок (событие А) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.

Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.

Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.

Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.

Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А) или осечка (событие ).

- два выстрела подряд

- первая осечка, второй выстрел

- первый выстрел, вторая осечка

- две осечки подряд

Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)

Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме

Теперь рассмотрим другой случай.

Пример5.1. Предположим, что после первого нажатия на курок барабан раскрутили и опять нажали на курок.

Вероятности первого выстрела и первой осечки не изменились - , Условные вероятности второго выстрела и осечки вычисляются из условия, что напротив ствола может оказаться то же гнездо, что и в первый раз.

Условная вероятность выстрела при второй попытке –

если в первый раз был выстрел,

- если в первый раз произошла осечка.

Условная вероятность осечки во второй раз –

, если в первый раз произошел выстрел,

- если была осечка.

Тогда:

- два выстрела подряд

- первая осечка, второй выстрел

- первый выстрел, вторая осечка

- две осечки подряд

В этом случае вероятность того, что произойдет хотя бы один выстрел, равна

Пример 6. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.

Решение. Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .

Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна:

Вероятность того, что второй стрелок попадет в цель, а первый – нет равна:

Тогда вероятность попадания в цель только одним стрелком равна

Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:

Тогда вероятность того, что в цель попадет только один стрелок, равна:

Пример 7. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.

Решение. Обозначим бракованную деталь – событие А, не бракованную – событие .

Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.

Формула полной вероятности.

Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий. Пусть известны вероятности этих событий и условные вероятности наступления события А при наступлении события Hi

.

Вероятность события А, которое может произойти вместе с одним из событий , равна сумме парных произведений вероятностей каждого из этих событий на соответствующие им условные вероятности наступления события А.

Фактически эта формула полной вероятности уже использовалась при решении примеров, приведенных выше, например, в задаче с револьвером.

Пример8. Один из трех стрелков производит два выстрела. Вероятность попадания в цель при одном выстреле для первого стрелка равна 0,4, для второго – 0,6, для третьего – 0,8. Найти вероятность того, что в цель попадут два раза.

Вероятность того, что выстрелы производит первый, второй или третий стрелок равна .

Вероятности того, что один из стрелков, производящих выстрелы, два раза попадает в цель, равны:

- для первого стрелка:

- для второго стрелка:

- для третьего стрелка:

Искомая вероятность равна:

Формула Байеса.

С формулой полной вероятности тесно связана формула Байеса. Если до опыта вероятности гипотез были , ,..., , а в результате опыта появилось событие , то с учетом этого события "новые", т.е. условные вероятности гипотез вычисляются по формуле Байеса

Где

Формула Байеса дает возможность "пересмотреть" вероятность гипотез с учетом наблюдавшегося результата опыта.

Пример 9. На заводе, изготовляющем болты, первая машина производит 25%, вторая - 35%, третья - 40% всех изделий. В их продукции брак составляет соответственно 5, 4 и 2%. а) Какова вероятность того, что случайно выбранный болт дефектный? б) Случайно выбранный из продукции болт оказался дефектным. Какова вероятность того, что он был произведен первой, второй, третьей машиной?

Решение. Пусть событие = {выбран дефектный болт}.

Выдвигаем три гипотезы:

={болт изготовлен первой машиной}, =0,25, =0,05;

={болт изготовлен второй машиной}, =0,35, =0,04;

={болт изготовлен третьей машиной}, =0,4, =0,02.

 

а)

б)

Пример 10. Студент подготовил к экзамену 20 билетов из 25. В каком случае шансы взять известный билет больше - когда студент пришел на экзамен первым или вторым?

Решение. Найдем вероятность взять известный билет, придя на экзамен вторым, учитывая, что первый может взять как известный, так и неизвестный второму билет.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: