Комплексная форма ряда Фурье




Ряд Фурье по любой ортогональной системе функций

Последовательность функций непрерывных на отрезке [ a, b ], называется ортогональной системой функции на отрезке [ a, b ], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если

Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],

если выполняется условие

Пусть теперь f (x) - любая функция непрерывная на отрезке [ a, b ]. Рядом Фурье такой функции f (x) на отрезке [ a, b ] по ортогональной системе называется ряд:

коэффициенты которого определяются равенством:

N=1,2,...

Если ортогональная система функций на отрезке [ a, b ] ортонормированная, то в этом случаи

где n =1,2,...

Пусть теперь f (x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [ a, b ]. Рядом Фурье такой функции f (x) на томже отрезке

по ортогональной системе называется ряд:

,

Если ряд Фурье функции f (x) по системе (1) сходится к функции f (x) в каждой ее точке непрерывности, принадлежащей отрезку [ a, b ]. В этом случае говорят что f (x) на отрезке [ a, b ] разлагается в ряд по ортогональной системе (1).

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x), если определяется равенством

,где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2,...)

Задача о колебании струны

Пусть в состоянии равновесия натянута струна длинной l с концами x= 0 и x = l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

При сделанных выше допущениях можно показать, что функция u (x,t), характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению

(1), где а - положительное число.

Наша з а д а ч а - найти функцию u (x,t), график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:

(2)

и начальных условиях:

(3)

Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u (x, t) 0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u (x,t)= X (x) T (t), (4), где , .

Подстановка выражения (4) в уравнение (1) дает:

Из которого наша задача сводится к отысканию решений уравнений:

Используя это условие X (0)=0, X (l)=0, докажем, что отрицательное число, разобрав все случаи.

a) Пусть Тогда X ”=0 и его общее решение запишется так:

откуда и ,что невозможно, так как мы рассматриваем решения, не обращающиеся тождественно в нуль.

б) Пусть . Тогда решив уравнение

получим , и, подчинив, найдем, что

в) Если то

Уравнения имеют корни:

получим:

где -произвольные постоянные. Из начального условия найдем:

откуда , т. е.

(n =1,2,...)

(n =1,2,...).

Учитывая это, можно записать:

(N=1,2,...).

и, следовательно

, (n =1,2,...),

но так как A и B разные для различных значений n то имеем

, (n =1,2,...),

где и произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).

Итак, подчиним функцию u (x,t) начальным условиям, т. е. подберем и так, чтобы выполнялись условия

Эти равенства являются соответственно разложениями функций и на отрезки [0, l ] в ряд Фурье по синусам. (Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой

где

(n =1,2,...)

 

 

Интеграл Фурье

Достаточные условия представимости функции в интеграл Фурье.

Для того, чтобы f (x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:

1) абсолютной интегрируемости на

(т.е. интеграл сходится)

2) на любом конечном отрезке [- L, L ] функция была бы кусочно-гладкой

3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f (x)

Интегралом Фурье функции f(x) называется интеграл вида:

, где ,

.

Интеграл Фурье для четной и нечетной функции

Пусть f (x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точки x =0 интервалу от четных функций, из равенства (2) получаем:

(3)

Таким образом, интеграл Фурье четной функции f (x) запишется так:

,

где a (u) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f (x):

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

,

где b (u) определяется равенством (4).

Комплексная форма интеграла Фурье

, (5)

где

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f (x).

Если в формуле (5) заменить c (u) его выражением, то получим:

, где правая часть формулы называется двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n =1,2,..., k =1,2,...

Дискретным преобразованием Фурье - называется N -мерный вектор

при этом, .

Глава 2

ПРАКТИЧЕСКАЯ ЧАСТЬ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: